- Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells.
Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells.
Angiotensin-converting enzymes, ACE and ACE2, are key members of renin angiotensin system. Activation of ACE2/Ang-(1-7) pathway enhances cardiovascular protective functions of bone marrow-derived stem/progenitor cells. The current study evaluated the selectivity of ACE2 inhibitors, MLN-4760 and DX-600, and ACE and ACE2 activities in human (hu) and murine (mu) bone marrow cells. Assays were carried out in hu and mu mononuclear cells (MNCs) and huCD34(+) cells or mu-lineage-depleted (muLin(-)) cells, human-recombinant (rh) enzymes, and mu-heart with enzyme-specific substrates. ACE or ACE2 inhibition by racemic MLN-4760, its isomers MLN-4760-A and MLN-4760-B, DX600 and captopril were characterized. MLN-4760-B is relatively less efficacious and less-selective than the racemate or MLN-4760-A at hu-rhACE2, and all three of them inhibited 43% rhACE. In huMNCs, MLN-4760-B detected 63% ACE2 with 28-fold selectivity over ACE. In huCD34(+) cells, MLN-4760-B detected 38% of ACE2 activity with 63-fold selectivity. In mu-heart and muMNCs, isomer B was 100- and 228-fold selective for ACE2, respectively. In muLin(-) cells, MLN-4760-B detected 25% ACE2 activity with a pIC50 of 6.3. The racemic mixture and MLN-4760-A showed lower efficacy and poor selectivity for ACE2 in MNCs and mu-heart. ACE activity detected by captopril was 32% and 19%, respectively, in huCD34(+) and muLin(-) cells. DX600 was less efficacious, and more selective for ACE2 compared to MLN-4760-B in all samples tested. These results suggest that MLN-4760-B is a better antagonist of ACE2 than DX600 at 10 µm concentration in human and murine bone marrow cells, and that these cells express more functional ACE2 than ACE.