Skip to Content
MilliporeSigma
  • NF-κB signaling regulates the formation of proliferating Müller glia-derived progenitor cells in the avian retina.

NF-κB signaling regulates the formation of proliferating Müller glia-derived progenitor cells in the avian retina.

Development (Cambridge, England) (2020-04-16)
Isabella Palazzo, Kyle Deistler, Thanh V Hoang, Seth Blackshaw, Andy J Fischer
ABSTRACT

Retinal regeneration is robust in some cold-blooded vertebrates, but this process is ineffective in warm-blooded vertebrates. Understanding the mechanisms that suppress the reprogramming of Müller glia into neurogenic progenitors is key to harnessing the regenerative potential of the retina. Inflammation and reactive microglia are known to influence the formation of Müller glia-derived progenitor cells (MGPCs), but the mechanisms underlying this interaction are unknown. We used a chick in vivo model to investigate nuclear factor kappa B (NF-κB) signaling, a critical regulator of inflammation, during the reprogramming of Müller glia into proliferating progenitors. We find that components of the NF-κB pathway are dynamically regulated by Müller glia after neuronal damage or treatment with growth factors. Inhibition of NF-κB enhances, whereas activation suppresses, the formation of proliferating MGPCs. Following microglia ablation, the effects of NF-κB-agonists on MGPC-formation are reversed, suggesting that signals provided by reactive microglia influence how NF-κB impacts Müller glia reprogramming. We propose that NF-κB is an important signaling 'hub' that suppresses the reprogramming of Müller glia into proliferating MGPCs and this 'hub' coordinates signals provided by reactive microglia.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-α-Phosphatidyl-DL-glycerol sodium salt from egg yolk lecithin, ≥99% (TLC), lyophilized powder
Roche
In Situ Cell Death Detection Kit, TMR red, sufficient for ≤50 tests
Sigma-Aldrich
Sulfasalazine, 97.0-101.5%
Sigma-Aldrich
N-Methyl-D-aspartic acid, ≥98% (TLC), solid