Skip to Content
MilliporeSigma
  • Overexpression of FYN suppresses the epithelial-to-mesenchymal transition through down-regulating PI3K/AKT pathway in lung adenocarcinoma.

Overexpression of FYN suppresses the epithelial-to-mesenchymal transition through down-regulating PI3K/AKT pathway in lung adenocarcinoma.

Surgical oncology (2020-06-21)
Feng Xue, Yong Jia, Jian Zhao
ABSTRACT

Tyrosine-protein kinase Fyn (FYN) plays a crucial role in Src family, which participates in the signal transduction of brain nerves and the development and activation of T lymphocytes in physiological conditions. We probed into the roles and mechanisms of FYN in lung adenocarcinoma (LUAD). Cell activity, apoptosis, invasion, and migration were detected by CCK-8, FCM, transwell, and wound-healing assays, respectively. The angiogenesis capacity was evaluated by in vitro angiogenesis test. Relative mRNA and protein expressions were determined by qRT-PCR, Western blot, and immunohistochemistry assays, respectively. Insulin-like growth factors-I (IGF-I) was used as an agonist of PI3K/AKT pathway. We demonstrated that FYN expression correlated with LUAD prognosis and was down-regulated in LUAD tissues and LUAD cells. Overexpression of FYN suppressed the cell viability, together with invasion and migration abilities of A549 cells. FYN overexpression accelerated the cell apoptosis and reduced the angiogenesis capacity of A549 cells. Overexpression of FYN suppressed E-cadherin, Vimentin, Snail, and PI3K/AKT expressions in A549 cells. High expression level of FYN reduced the migration and invasion capacities of A549 cells via down-regulating the PI3K/AKT pathway. Collectively, our findings reveal that overexpression of FYN inhibits the epithelial-to-mesenchymal transition (EMT) through down-regulating the PI3K/AKT pathway in A549 cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(Tyr[SO3H]27)Cholecystokinin fragment 26-33 Amide, ≥97% (HPLC), powder