Skip to Content
MilliporeSigma
  • Mitochondrial and NAD+ metabolism predict recovery from acute kidney injury in a diverse mouse population.

Mitochondrial and NAD+ metabolism predict recovery from acute kidney injury in a diverse mouse population.

JCI insight (2023-02-09)
Jean-David Morel, Maroun Bou Sleiman, Terytty Yang Li, Giacomo von Alvensleben, Alexis M Bachmann, Dina Hofer, Ellen Broeckx, Jing Ying Ma, Vinicius Carreira, Tao Chen, Nabil Azhar, Romer A Gonzalez-Villalobos, Matthew Breyer, Dermot Reilly, Shannon Mullican, Johan Auwerx
ABSTRACT

Acute kidney failure and chronic kidney disease are global health issues steadily rising in incidence and prevalence. Animal models on a single genetic background have so far failed to recapitulate the clinical presentation of human nephropathies. Here, we used a simple model of folic acid-induced kidney injury in 7 highly diverse mouse strains. We measured plasma and urine parameters, as well as renal histopathology and mRNA expression data, at 1, 2, and 6 weeks after injury, covering the early recovery and long-term remission. We observed an extensive strain-specific response ranging from complete resistance of the CAST/EiJ to high sensitivity of the C57BL/6J, DBA/2J, and PWK/PhJ strains. In susceptible strains, the severe early kidney injury was accompanied by the induction of mitochondrial stress response (MSR) genes and the attenuation of NAD+ synthesis pathways. This is associated with delayed healing and a prolonged inflammatory and adaptive immune response 6 weeks after insult, heralding a transition to chronic kidney disease. Through a thorough comparison of the transcriptomic response in mouse and human disease, we show that critical metabolic gene alterations were shared across species, and we highlight the PWK/PhJ strain as an emergent model of transition from acute kidney injury to chronic disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-LONP1 antibody produced in rabbit, Ab2, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, ascites fluid, clone B-5-1-2