Skip to Content
MilliporeSigma
  • Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles.

Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2014-02-14)
Melissa M Thomas, David C Wang, Donna M D'Souza, Matthew P Krause, Andrew S Layne, David S Criswell, Hayley M O'Neill, Michael K Connor, Judy E Anderson, Bruce E Kemp, Gregory R Steinberg, Thomas J Hawke
ABSTRACT

AMP-activated protein kinase (AMPK) is a master regulator of metabolism. While muscle-specific AMPK β1β2 double-knockout (β1β2M-KO) mice display alterations in metabolic and mitochondrial capacity, their severe exercise intolerance suggested a secondary contributor to the observed phenotype. We find that tibialis anterior (TA), but not soleus, muscles of sedentary β1β2M-KO mice display a significant myopathy (decreased myofiber areas, increased split and necrotic myofibers, and increased centrally nucleated myofibers. A mitochondrial- and fiber-type-specific etiology to the myopathy was ruled out. However, β1β2M-KO TA muscles displayed significant (P<0.05) increases in platelet aggregation and apoptosis within myofibers and surrounding interstitium (P<0.05). These changes correlated with a 45% decrease in capillary density (P<0.05). We hypothesized that the β1β2M-KO myopathy in resting muscle resulted from impaired AMPK-nNOSμ signaling, causing increased platelet aggregation, impaired vasodilation, and, ultimately, ischemic injury. Consistent with this hypothesis, AMPK-specific phosphorylation (Ser1446) of nNOSμ was decreased in β1β2M-KO compared to wild-type (WT) mice. The AMPK-nNOSμ relationship was further demonstrated by administration of 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) to β1β2-MKO muscles and C2C12 myotubes. AICAR significantly increased nNOSμ phosphorylation and nitric oxide production (P<0.05) within minutes of administration in WT muscles and C2C12 myotubes but not in β1β2M-KO muscles. These findings highlight the importance of the AMPK-nNOSμ pathway in resting skeletal muscle.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
5-Amino-4-imidazolecarboxamide, 95%
Supelco
5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5′-monophosphate, analytical standard
Dacarbazine impurity B, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5′-monophosphate, ≥93%