Skip to Content
MilliporeSigma

Long-term storage of lyophilized liposomal formulations.

Journal of pharmaceutical sciences (2014-10-14)
Nicole M Payton, Michael F Wempe, Yemin Xu, Thomas J Anchordoquy
ABSTRACT

Because aqueous liposomal formulations containing multiply unsaturated lipids are susceptible to chemical degradation, these formulations are often lyophilized. Despite their limited chemical stability, interest in the use of multiply unsaturated lipids to promote intracellular delivery has increased considerably in recent years. The goal of the current study was to examine the long-term storage stability of lyophilized formulations containing lipids with increasing levels of unsaturation, and various strategies that can be employed to improve stability. Aqueous lipid-trehalose formulations containing 1,2-dilinolenoyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLinPC), or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were lyophilized and stored at temperatures ranging from 4°C to 60°C. We observed that the lipid degradation rate increased as the storage temperature and unsaturation level were increased. Even the cleanest sugars, which are available commercially, contain iron contaminants, and it was observed that the chelation of these iron contaminants significantly improved the stability of DLPC during storage. However, the glass transition temperature of the sugar that was included in the formulation, the reduction of the oxygen in the aqueous sample prior to lyophilization, the inclusion of helper lipids (i.e., cholesterol), and the rate of freezing did not significantly improve stability.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Propionic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Propionic acid, natural, 99%, FG
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Nitrogen, ≥99.998%
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Propionic acid, BioReagent, suitable for insect cell culture, ~99%
Sucrose, European Pharmacopoeia (EP) Reference Standard
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Millipore
Sucrose, ACS reagent, suitable for microbiology, ≥99.0%
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Propionic acid, ACS reagent, ≥99.5%
Supelco
Propionic acid, analytical standard
Sigma-Aldrich
Propionic acid, puriss. p.a., ≥99.5% (GC)
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Methanol solution, (Methanol:Dimethyl sulfoxide 1:1 (v/v))
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.