- Leukemia inhibitory factor protects the lung during respiratory syncytial viral infection.
Leukemia inhibitory factor protects the lung during respiratory syncytial viral infection.
Respiratory syncytial virus (RSV) infects the lung epithelium where it stimulates the production of numerous host cytokines that are associated with disease burden and acute lung injury. Characterizing the host cytokine response to RSV infection, the regulation of host cytokines and the impact of neutralizing an RSV-inducible cytokine during infection were undertaken in this study. A549, primary human small airway epithelial (SAE) cells and wild-type, TIR-domain-containing adapter-inducing interferon-Ī² (Trif) and mitochondrial antiviral-signaling protein (Mavs) knockout (KO) mice were infected with RSV and cytokine responses were investigated by ELISA, multiplex analysis and qPCR. Neutralizing anti-leukemia inhibitory factor (LIF) IgG or control IgG was administered to a group of wild-type animals prior to RSV infection. RSV-infected A549 and SAE cells release a network of cytokines, including newly identified RSV-inducible cytokines LIF, migration inhibitory factor (MIF), stem cell factor (SCF), CCL27, CXCL12 and stem cell growth factor beta (SCGF-Ī²). These RSV-inducible cytokines were also observed in the airways of mice during an infection. To identify the regulation of RSV inducible cytokines, Mavs and Trif deficient animals were infected with RSV. In vivo induction of airway IL-1Ī², IL-4, IL-5, IL-6, IL-12(p40), IFN-Ī³, CCL2, CCL5, CCL3, CXCL1, IP-10/CXCL10, IL-22, MIG/CXCL9 and MIF were dependent on Mavs expression in mice. Loss of Trif expression in mice altered the RSV induction of IL-1Ī², IL-5, CXCL12, MIF, LIF, CXCL12 and IFN-Ī³. Silencing of retinoic acid-inducible gene-1 (RIG-I) expression in A549 cells had a greater impact on RSV-inducible cytokines than melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2), and Trif expression. To evaluate the role of LIF in the airways during RSV infection, animals were treated with neutralizing anti-LIF IgG, which enhanced RSV pathology observed with increased airspace protein content, apoptosis and airway hyperresponsiveness compared to control IgG treatment. RSV infection in the epithelium induces a network of immune factors to counter infection, primarily in a RIG-I dependent manner. Expression of LIF protects the lung from lung injury and enhanced pathology during RSV infection.