Skip to Content
MilliporeSigma

Discovery of Potent and Selective RSK Inhibitors as Biological Probes.

Journal of medicinal chemistry (2015-08-14)
Rama Jain, Michelle Mathur, Jiong Lan, Abran Costales, Gordana Atallah, Savithri Ramurthy, Sharadha Subramanian, Lina Setti, Paul Feucht, Bob Warne, Laura Doyle, Stephen Basham, Anne B Jefferson, Mika Lindvall, Brent A Appleton, Cynthia M Shafer
ABSTRACT

While the p90 ribosomal S6 kinase (RSK) family has been implicated in multiple tumor cell functions, the full understanding of this kinase family has been restricted by the lack of highly selective inhibitors. A bis-phenol pyrazole was identified from high-throughput screening as an inhibitor of the N-terminal kinase of RSK2. Structure-based drug design using crystallography, conformational analysis, and scaffold morphing resulted in highly optimized difluorophenol pyridine inhibitors of the RSK kinase family as demonstrated cellularly by the inhibition of YB1 phosphorylation. These compounds provide for the first time in vitro tools with an improved selectivity and potency profile to examine the importance of RSK signaling in cancer cells and to fully evaluate RSK as a therapeutic target.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
LJI308, ≥98% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture