Skip to Content
MilliporeSigma
  • Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury.

Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury.

Journal of the American Heart Association (2015-10-29)
Daniela Lobenwein, Can Tepeköylü, Radoslaw Kozaryn, Elisabeth J Pechriggl, Mario Bitsche, Michael Graber, Helga Fritsch, Severin Semsroth, Nadia Stefanova, Patrick Paulus, Martin Czerny, Michael Grimm, Johannes Holfeld
ABSTRACT

Paraplegia following spinal cord ischemia represents a devastating complication of both aortic surgery and endovascular aortic repair. Shock wave treatment was shown to induce angiogenesis and regeneration in ischemic tissue by modulation of early inflammatory response via Toll-like receptor (TLR) 3 signaling. In preclinical and clinical studies, shock wave treatment had a favorable effect on ischemic myocardium. We hypothesized that shock wave treatment also may have a beneficial effect on spinal cord ischemia. A spinal cord ischemia model in mice and spinal slice cultures ex vivo were performed. Treatment groups received immediate shock wave therapy, which resulted in decreased neuronal degeneration and improved motor function. In spinal slice cultures, the activation of TLR3 could be observed. Shock wave effects were abolished in spinal slice cultures from TLR3(-/-) mice, whereas the effect was still present in TLR4(-/-) mice. TLR4 protein was found to be downregulated parallel to TLR3 signaling. Shock wave-treated animals showed significantly better functional outcome and survival. The protective effect on neurons could be reproduced in human spinal slices. Shock wave treatment protects from neuronal degeneration via TLR3 signaling and subsequent TLR4 downregulation. Consequently, it represents a promising treatment option for the devastating complication of spinal cord ischemia after aortic repair.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Streptomycin sulfate salt, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Streptomycin sulfate salt, powder
Sigma-Aldrich
Streptomycin sulfate salt, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Xylazine hydrochloride, ≥99.0% (HPLC)
Sigma-Aldrich
Tris(tert-butoxy)silanol, 99.999%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Streptomycin Ready Made Solution, 100 mg/mL in water