Skip to Content
MilliporeSigma
  • Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7.

Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7.

Clinical epigenetics (2016-05-03)
Sahar Olsadat Sajadian, Chaturvedula Tripura, Fazel Sahraneshin Samani, Marc Ruoss, Steven Dooley, Hossein Baharvand, Andreas K Nussler
ABSTRACT

5-Azacytidine (5-AZA), a DNA methyl transferase inhibitor, is a clinically used epigenetic drug for cancer therapy. Recently, we have shown that 5-AZA upregulates ten-eleven translocation (TET) protein expression in hepatocellular carcinoma (HCC) cells, which induce active demethylation. Vitamin C facilitates TET activity and enhances active demethylation. The aim of this study is to investigate whether vitamin C is able to enhance the effect of 5-AZA on active demethylation and to evaluate its consequence in HCC cell lines. HCC cell lines (Huh7 and HLE) were treated with 5-AZA and vitamin C. After 48 h of treatment, viability (resazurin conversion), toxicity (lactose dehydrogenase (LDH) release), and proliferation ((proliferating cell nuclear antigen (PCNA)) of single- and combined-treated cells were assessed. The effect of the treatment on 5-hydroxymethylcytosine (5hmC) intensity (immunofluorescence (IF) staining), TET, Snail, GADD45B, and P21 mRNA (real-time PCR) and protein expression (Western blot) were investigated. Our results indicated that vitamin C enhances the anti-proliferative and apoptotic effect of 5-AZA in HCC cell lines. By further analyzing the events leading to cell cycle arrest, we have shown for the first time in HCC that the combination of 5-AZA and vitamin C leads to an enhanced downregulation of Snail expression, a key transcription factor governing epithelial-mesenchymal transition (EMT) process, and cell cycle arrest. We conclude that when combined with 5-AZA, vitamin C enhances TET activity in HCC cells, leading to induction of active demethylation. An increase in P21 expression as a consequence of downregulation of Snail accompanied by the induction of GADD45B expression is the main mechanism leading to cell cycle arrest in HCCs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-TET3 (C-terminal) antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-TET2 antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Anti-GAPDH antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution