Skip to Content
MilliporeSigma
  • Connexin and AMPA receptor expression changes over time in the rat olfactory bulb.

Connexin and AMPA receptor expression changes over time in the rat olfactory bulb.

Neuroscience (2012-07-21)
J T Corthell, D A Fadool, P Q Trombley
ABSTRACT

Circadian rhythms affect olfaction by an unknown molecular mechanism. Independent of the suprachiasmatic nuclei, the mammalian olfactory bulb (OB) has recently been identified as a circadian oscillator. The electrical activity in the OB was reported to be synchronized to a daily rhythm and the clock gene, Period1, was oscillatory in its expression pattern. Because gap junctions composed of connexin36 and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) have been reported to work together to synchronize firing of action potentials in the OB, we hypothesized that circadian electrical oscillations could be synchronized by daily changes in the expression of connexins and AMPAR subunits (GluR1-4). We examined the OB for the presence of clock genes by polymerase chain reaction (PCR) and whether Period2, connexins, and AMPARs fluctuated across the light/dark cycle by quantitative PCR or SDS-PAGE/Western blot analysis. We observed significant changes in the messenger RNA and protein expression of our targets across 24 or 48 h. Whereas most targets were rhythmic by some measures, only GluR1 mRNA and protein were both rhythmic by the majority of our tests of rhythmicity across all time scales. Differential expression of these synaptic proteins over the light/dark cycle may underlie circadian synchronization of action potential firing in the OB or modify synaptic interactions that would be predicted to impact olfactory coding, such as alteration of granule cell inhibition, increased number of available AMPARs to bind glutamate, or an increased gap junction conductance between mitral/tufted cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Tubulin β-III antibody produced in rabbit, affinity isolated antibody