Skip to Content
MilliporeSigma
  • Interaction of Neisseria meningitidis Group X N-acetylglucosamine-1-phosphotransferase with its donor substrate.

Interaction of Neisseria meningitidis Group X N-acetylglucosamine-1-phosphotransferase with its donor substrate.

Glycobiology (2017-12-12)
Shonoi A Ming, Ebony Cottman-Thomas, Natalee C Black, Yi Chen, Vamsee Veeramachineni, Dwight C Peterson, Xi Chen, Lauren M Tedaldi, Gerd K Wagner, Chao Cai, Robert J Linhardt, Willie F Vann
ABSTRACT

Neisseria meningitidis Group X is an emerging cause of bacterial meningitis in Sub-Saharan Africa. The capsular polysaccharide of Group X is a homopolymer of N-acetylglucosamine α(1-4) phosphate and is a vaccine target for prevention of disease associated with this meningococcal serogroup. We have demonstrated previously that the formation of the polymer is catalyzed by a phosphotransferase which transfers N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to the 4-hydroxyl of the N-acetylglucosamine on the nonreducing end of the growing chain. In this study, we use substrate analogs of UDP-GlcNAc to define the enzyme/donor substrate interactions critical for catalysis. Our kinetic analysis of the phosphotransferase reaction is consistent with a sequential mechanism of substrate addition and product release. The use of novel uracil modified analogs designed by Wagner et al. enabled us to assess whether the CsxA-catalyzed reaction is consistent with a donor dependent conformational change. As expected with this model for glycosyltransferases, UDP-GlcNAc analogs with bulky uracil modifications are not substrates but are inhibitors. An analog with a smaller iodo uracil substitution is a substrate and a less potent inhibitor. Moreover, our survey of analogs with modifications on the N-acetylglucosamine residue of the sugar nucleotide donor highlights the importance of substituents at C2 and C4 of the sugar residue. The hydroxyl group at C4 and the structure of the acyl group at C2 are very important for specificity and substrate interactions during the polymerization reaction. While most analogs modified at C2 were inhibitors, acetamido analogs were also substrates suggesting the importance of the carbonyl group.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Protease Inhibitor Cocktail powder, for use with bacterial cell extracts, lyophilized powder
Sigma-Aldrich
2-Chloro-1,3-dimethylimidazolinium chloride
Sigma-Aldrich
Phosphatase, Alkaline from bovine intestinal mucosa, BioUltra, ≥5,700 DEA units/mg protein