Skip to Content
Merck
  • Diurnal properties of voltage-gated Ca2+ currents in suprachiasmatic nucleus and roles in action potential firing.

Diurnal properties of voltage-gated Ca2+ currents in suprachiasmatic nucleus and roles in action potential firing.

The Journal of physiology (2019-06-10)
Beth A McNally, Amber E Plante, Andrea L Meredith
ABSTRACT

Circadian oscillations in spontaneous action potential firing in the suprachiasmatic nucleus (SCN) translate time-of-day throughout the mammalian brain. The ion channels that regulate the circadian pattern of SCN firing have not been comprehensively identified. Ca2+ channels regulate action potential activity across many types of excitable cells, and the activity of L-, N-, P/Q- and R-type channels are required for normal daytime firing frequency in SCN neurons and circuit rhythms. Only the L-type Ca2+ current exhibits a day versus night difference in current magnitude, providing insight into the mechanism that produces rhythmic action potential firing in SCN. The mammalian circadian clock encodes time via rhythmic action potential activity in the suprachiasmatic nucleus (SCN) of the hypothalamus, which governs daily rhythms in physiology and behaviour. SCN neurons exhibit 24 h oscillations in spontaneous firing, with higher firing during day compared to night. Several ionic currents have been identified that regulate SCN firing, including voltage-gated Ca2+ currents, but the circadian regulation of distinct voltage-gated Ca2+ channel (VGCC) components has not been comprehensively addressed. In this study, whole-cell L- (nimodipine-sensitive), N- and P/Q- (ω-agatoxin IVA, ω-conotoxin GVIA, ω-conotoxin MVIIC-sensitive), R- (Ni2+ -sensitive) and T-type (TTA-P2-sensitive) currents were recorded from day and night SCN slices. Using standard voltage protocols, Ni2+ -sensitive currents comprised the largest proportion of total VGCC current, followed by nimodipine-, ω-agatoxin IVA-, ω-conotoxin GVIA- and TTA-P2-sensitive currents. Only the nimodipine-sensitive current exhibited a diurnal difference in magnitude, with daytime current larger than night. No diurnal variation was observed for the other Ca2+ current subtypes. The difference in nimodipine-sensitive current was due to larger peak current activated during the day, not differences in inactivation, and was eliminated by Bay K8644. Blocking L-type channels decreased firing selectively during the day, consistent with higher current magnitudes, and reduced SCN circuit rhythmicity recorded by multi-electrode arrays. Yet blocking N-, P/Q- and R-type channels also decreased daytime firing, with little effect at night, and decreased circuit rhythmicity. These data identify a unique diurnal regulation of L-type current among the major VGCC subtypes in SCN neurons, but also reveal that diurnal modulation is not required for time-of-day-specific effects on firing and circuit rhythmicity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium methanesulfonate, ≥98.0% (dry substance, T)
Supelco
Poly(ethyleneimine) solution, analytical standard, 50 % (w/v) in H2O
Sigma-Aldrich
Cytosine β-D-arabinofuranoside hydrochloride, crystalline
Sigma-Aldrich
Cadmium chloride hydrate, 99.995% trace metals basis
Sigma-Aldrich
Dantrolene sodium salt
Sigma-Aldrich
(S)-(−)-Bay K8644, ≥98% (HPLC), solid
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
Cyclopiazonic acid from Penicillium cyclopium, ≥98% (HPLC), powder
Sigma-Aldrich
N6-Cyclopentyladenosine, solid