Skip to Content
Merck

A simpler potentiometric method for histamine assessment in blood sera.

Analytical and bioanalytical chemistry (2020-04-03)
A R Pereira, A N Araújo, M C B S M Montenegro, C M P Gomes Amorim
ABSTRACT

Histamine intolerance results from a disequilibrium of accumulated histamine and the capacity for histamine degradation. An impaired histamine degradation based on reduced DAO activity and the resulting histamine excess may cause numerous symptoms mimicking an allergic reaction. For that, the determination of histamine in blood or in food products has great importance to identify risk factors. A new histamine-selective electrode is proposed using cucurbit[6]uril (CB[6]), as ionophore, in the analysis of biological samples. The selection of this smart supramolecular organic framework was based on its apparent stability constant of histamine-CB[6] (log β) of 4.33. The optimized electrode based on a polymeric membrane (PVC) combines the histamine-selective ionophore with 2-nitrophenyl octyl ether as solvent mediator and potassium tetrakis(4-chlorophenyl)borate as anionic additive. Furthermore, multi-walled carbon nanotubes particles were included in the membrane composition to partly lower the detection limit of the method, while improving stability and lowering the response drift (± 4 mV). The electrodes showed a rapid response (≃ 13 s) in the pH operational range of 2.7-5.4, with a Nernstian slope of 30.9 ± 1.2 mV/dec, a detection limit of (3.00 ± 0.61) × 10-7 mol/L, and a lower limit of the linear range of (3.00 ± 0.00) × 10-7 mol/L. After miniaturization, the electrode was used as a detector in a sequential-injection lab-on-valve flow setup. The optimized flow conditions were achieved for sample injection volumes of 197 μL propelled towards the cell under detection, at a flow rate of 30 μL/s during 100 s, making the analysis of 30 samples per hour possible. The developed system was used to analyze spiked blood serum samples previously cleaned by using solid-phase extraction. The sample pretreatment of the serum samples using Oasis MCX cartridges showed outstanding efficiency for histamine determination. The recovery values for three different levels of histamine concentration (1 × 10-4 mol/L, 1 × 10-5 mol/L, and 1 × 10-6 mol/L) were (97 ± 6)%, (103 ± 1)%, and (118 ± 9)%, respectively, showing that this method was suitable for biological samples.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Putrescine dihydrochloride, ≥98% (TLC)
Sigma-Aldrich
Cadaverine dihydrochloride, ≥99.0% (AT)
Sigma-Aldrich
Lithium chloride, ACS reagent, ≥99%
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Calcium chloride
Sigma-Aldrich
Histamine dihydrochloride, ≥99% (TLC), powder
Supelco
Potassium tetrakis(4-chlorophenyl)borate, Selectophore, ≥98.0%
Supelco
Poly(vinyl chloride), Selectophore, high molecular weight
Sigma-Aldrich
α-Cyclodextrin, purum, ≥98.0% (HPLC)
Supelco
2-Nitrophenyl octyl ether, Selectophore, ≥99.0%
Sigma-Aldrich
Cucurbit[6]uril hydrate, contains acid of crystalization