Skip to Content
Merck
  • The rates of adult neurogenesis and oligodendrogenesis are linked to cell cycle regulation through p27-dependent gene repression of SOX2.

The rates of adult neurogenesis and oligodendrogenesis are linked to cell cycle regulation through p27-dependent gene repression of SOX2.

Cellular and molecular life sciences : CMLS (2023-01-11)
Ana Domingo-Muelas, Jose Manuel Morante-Redolat, Verónica Moncho-Amor, Antonio Jordán-Pla, Ana Pérez-Villalba, Pau Carrillo-Barberà, Germán Belenguer, Eva Porlan, Martina Kirstein, Oriol Bachs, Sacri R Ferrón, Robin Lovell-Badge, Isabel Fariñas
ABSTRACT

Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit. By integrating genome-wide gene expression and chromatin accessibility data, we find that p27 is coincidentally necessary to repress many genes involved in the transit from multipotentiality to differentiation, including those coding for neural progenitor transcription factors SOX2, OLIG2 and ASCL1. Our data reveal both a direct association of p27 with regulatory sequences in the three genes and an additional hierarchical relationship where p27 repression of Sox2 leads to reduced levels of its downstream targets Olig2 and Ascl1. In vivo, p27 is also required for the regulation of the proper level of SOX2 necessary for neuroblasts and oligodendroglial progenitor cells to timely exit cell cycle in a lineage-dependent manner.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
hBFGF, FGF-Basic, recombinant, expressed in E. coli, suitable for cell culture
Sigma-Aldrich
Anti-Glial Fibrillary Acidic Protein Antibody, Chemicon®, from chicken
Sigma-Aldrich
Cdk1/2 Inhibitor III, The Cdk1/2 Inhibitor III, also referenced under CAS 443798-55-8, controls the biological activity of Cdk1/2. This small molecule/inhibitor is primarily used for Phosphorylation & Dephosphorylation applications.
Sigma-Aldrich
Anti-Olig-2 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Polysialic Acid-NCAM Antibody, clone 2-2B, ascites fluid, clone 2-2B, Chemicon®
Sigma-Aldrich
Anti-β-Tubulin III antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution