Skip to Content
Merck
  • Encapsulation of a highly sensitive EPR active oxygen probe into sonochemically prepared microspheres.

Encapsulation of a highly sensitive EPR active oxygen probe into sonochemically prepared microspheres.

The journal of physical chemistry. B (2007-03-29)
Joe Z Sostaric, Ramasamy P Pandian, Anna Bratasz, Periannan Kuppusamy
ABSTRACT

High-power ultrasound (20 kHz) was used to encapsulate a solution of perchlorotriphenylmethyl triester (PTM-TE, a stable organic free radical) dissolved in hexamethyldisiloxane (HMDS) into a polymerized shell of bovine serum albumin (BSA). The size distribution of the microspheres was between 0.5 and 3 microm with a maximum at approximately 1.2 microm. The electron paramagnetic resonance spectrum of PTM-TE consists of a single, sharp line which is sensitive to the surrounding concentration of oxygen. It was found that the technique of encapsulating a solution of PTM-TE dissolved in HMDS into the BSA microspheres resulted in an overall loss of EPR signal intensity from the washed suspension of microspheres. However, the encapsulated PTM-TE/HMDS solution remained sensitive to the partial pressure of oxygen in the surrounding environment. The microspheres were found to be useful for determining the partial pressure of oxygen in the muscle and tumor tissue of mice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexamethyldisiloxane, NMR grade, ≥99.5%
Sigma-Aldrich
Hexamethyldisiloxane, puriss., ≥98.5% (GC)
Sigma-Aldrich
Hexamethyldisiloxane, viscosity 0.65 cSt (25 °C)
Sigma-Aldrich
Hexamethyldisiloxane, ≥98%