Skip to Content
Merck

Film-Stabilizing Attributes of Polymeric Core-Shell Nanoparticles.

ACS nano (2015-07-07)
Xiao-Jing Cai, Hao-Miao Yuan, Anton Blencowe, Greg G Qiao, Jan Genzer, Richard J Spontak
ABSTRACT

Self-organization of nanoparticles into stable, molecularly thin films provides an insightful paradigm for manipulating the manner in which materials interact at nanoscale dimensions to generate unique material assemblies at macroscopic length scales. While prior studies in this vein have focused largely on examining the performance of inorganic or organic/inorganic hybrid nanoparticles (NPs), the present work examines the stabilizing attributes of fully organic core-shell microgel (CSMG) NPs composed of a cross-linked poly(ethylene glycol dimethacrylate) (PEGDMA) core and a shell of densely grafted, but relatively short-chain, polystyrene (PS) arms. Although PS homopolymer thin films measuring from a few to many nanometers in thickness, depending on the molecular weight, typically dewet rapidly from silica supports at elevated temperatures, spin-coated CSMG NP films measuring as thin as 10 nm remain stable under identical conditions for at least 72 h. Through the use of self-assembled monolayers (SAMs) to alter the surface of a flat silica-based support, we demonstrate that such stabilization is not attributable to hydrogen bonding between the acrylic core and silica. We also document that thin NP films consisting of three or less layers (10 nm) and deposited onto SAMs can be fully dissolved even after extensive thermal treatment, whereas slightly thicker films (40 nm) on Si wafer become only partially soluble during solvent rinsing with and without sonication. Taken together, these observations indicate that the present CSMG NP films are stabilized primarily by multidirectional penetration of relatively short, unentangled NP arms caused by NP layering, rather than by chain entanglement as in linear homopolymer thin films. This nanoscale "velcro"-like mechanism permits such NP films, unlike their homopolymer counterparts of comparable chain length and thickness, to remain intact as stable, free-floating sheets on water, and thus provides a viable alternative to ultrathin organic coating strategies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anisole, ≥99%, FCC, FG
Sigma-Aldrich
4-Methoxyphenol, ReagentPlus®, 99%
Sigma-Aldrich
Hydroquinone, ReagentPlus®, 99%
Sigma-Aldrich
N,N,N′,N′′,N′′-Pentamethyldiethylenetriamine, 99%
Sigma-Aldrich
(N,N-Dimethylaminopropyl)trimethoxysilane, 96%
Sigma-Aldrich
Hydroquinone, meets USP testing specifications
Sigma-Aldrich
Hydroquinone, ReagentPlus®, ≥99%
Sigma-Aldrich
Hydroquinone, JIS special grade, ≥99.0%
Sigma-Aldrich
Toluene, JIS 300, for residue analysis, ≥99.8%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Toluene, JIS special grade, ≥99.5%
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Toluene, SAJ first grade, ≥99.0%
Sigma-Aldrich
Anisole, anhydrous, 99.7%
Sigma-Aldrich
Toluene, JIS 1000, for residue analysis, ≥99.8%
Sigma-Aldrich
Toluene, suitable for HPLC, ≥99.9%
Supelco
Toluene, HPLC grade, 99.8%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Tetrahydrofuran, SAJ first grade, ≥99.0%
Sigma-Aldrich
Styrene, SAJ first grade, ≥99.0%
Sigma-Aldrich
Copper(II) bromide, 99.999% trace metals basis
Sigma-Aldrich
Copper(II) bromide, 99%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Styrene, ReagentPlus®, contains 4-tert-butylcatechol as stabilizer, ≥99%
Sigma-Aldrich
Ethylene glycol dimethacrylate, 98%, contains 90-110 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
(1-Bromoethyl)benzene, 97%
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%