Skip to Content
Merck
  • Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL.

Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL.

Oncotarget (2015-10-28)
Yoko Hari, Nanae Harashima, Yoshitsugu Tajima, Mamoru Harada
ABSTRACT

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of cancer cells without damaging normal cells. However, in terms of pancreatic cancer, not all cancer cells are sensitive to TRAIL. In this study, we examined a panel of human pancreatic cancer cell lines for TRAIL sensitivity and investigated the effects of Bcl-2 family inhibitors on their response to TRAIL. Both ABT-263 and ABT-737 inhibited the function of Bcl-2, Bcl-xL, and Bcl-w. Of the nine pancreatic cancer cell lines tested, six showed no or low sensitivity to TRAIL, which correlated with protein expression of Bcl-xL. ABT-263 significantly sensitized four cell lines (AsPC-1, Panc-1, CFPAC-1, and Panc10.05) to TRAIL, with reduced cell viability and increased apoptosis. Knockdown of Bcl-xL, but not Bcl-2, by siRNA transfection increased the sensitivity of AsPC-1 and Panc-1 cells to TRAIL. ABT-263 treatment had no effect on protein expression of Bcl-2, Bcl-xL, or c-FLIPs. In Panc-1 cells, ABT-263 increased the surface expression of death receptor (DR) 5; the NF-κB pathway, but not endoplasmic reticulum stress, participated in the increase. In xenograft mouse models, the combination of TRAIL and ATB-737 suppressed the in vivo tumor growth of AsPC-1 and Panc-1 cells. These results indicate that Bcl-xL is responsible for TRAIL resistance in human pancreatic cancer cells, and that Bcl-2 family inhibitors could represent promising reagents to sensitize human pancreatic cancers in DR-targeting therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldehyde solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde solution, 10%
Sigma-Aldrich
Formaldehyde solution, SAJ first grade, ≥35.0%, contains methanol as stabilizer
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Bcl2l1
Sigma-Aldrich
MISSION® esiRNA, targeting human BCL2L1
Sigma-Aldrich
Z-Ile-Glu(O-ME)-Thr-Asp(O-Me) fluoromethyl ketone, ≥90% (TLC), powder
Sigma-Aldrich
Thapsigargin, ≥98% (HPLC), solid film