Skip to Content
Merck

Polymer-Lipid Hybrid Vesicles and Their Interaction with HepG2 Cells.

Small (Weinheim an der Bergstrasse, Germany) (2020-05-30)
Edit Brodszkij, Isabella N Westensee, Mathias Bertelsen, Noga Gal, Thomas Boesen, Brigitte Städler
ABSTRACT

Polymer-lipid hybrid vesicles are an emerging type of nano-assemblies that show potential as artificial organelles among others. Phospholipids and poly(cholesteryl methacrylate)-block-poly(methionine methacryloyloxyethyl ester (METMA)-random-2-carboxyethyl acrylate (CEA)) labeled with a Förster resonance energy transfer (FRET) reporter pair are used for the assembly of small and giant hybrid vesicles with homogenous distribution of both building blocks in the membrane as confirmed by the FRET effect. These hybrid vesicles have no inherent cytotoxicity when incubated with HepG2 cells up to 1.1 × 1011 hybrid vesicles per mL, and they are internalized by the cells. In contrast to the fluorescent signal originating from the block copolymer, the fluorescent signal coming from the lipids is barely detectable in cells incubated with hybrid vesicles for 6 h followed by 24 h in cell media, suggesting that the two building blocks have a different intracellular fate. These findings provide important insight into the design criteria of artificial organelles with potential structural integrity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Boc-Met-OH, 99%
Sigma-Aldrich
1,2-Dilinoleoyl-3-palmitoyl-rac-glycerol, ≥95% (TLC), liquid
Sigma-Aldrich
(Tyr[SO3H]27)Cholecystokinin fragment 26-33 Amide, ≥97% (HPLC), powder
Sigma-Aldrich
2-Carboxyethyl acrylate, contains 900-1100 ppm MEHQ as inhibitor
Sigma-Aldrich
2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid, 98% (HPLC)
Sigma-Aldrich
1,2-Dioleoyl-sn-glycero-3-phosphocholine, lyophilized powder
Sigma-Aldrich
Triton X-100, laboratory grade
CellCrown inserts, 6 well plate inserts with 1.0 μm polycarbonate filter, sterile