Skip to Content
Merck
  • A sequential 3D bioprinting and orthogonal bioconjugation approach for precision tissue engineering.

A sequential 3D bioprinting and orthogonal bioconjugation approach for precision tissue engineering.

Biomaterials (2020-08-18)
Claire Yu, Kathleen L Miller, Jacob Schimelman, Pengrui Wang, Wei Zhu, Xuanyi Ma, Min Tang, Shangting You, Deepak Lakshmipathy, Frank He, Shaochen Chen
ABSTRACT

Recent advances in 3D bioprinting have transformed the tissue engineering landscape by enabling the controlled placement of cells, biomaterials, and bioactive agents for the biofabrication of living tissues and organs. However, the application of 3D bioprinting is limited by the availability of cytocompatible and printable biomaterials that recapitulate properties of native tissues. Here, we developed an integrated 3D projection bioprinting and orthogonal photoconjugation platform for precision tissue engineering of tailored microenvironments. By using a photoreactive thiol-ene gelatin bioink, soft hydrogels can be bioprinted into complex geometries and photopatterned with bioactive moieties in a rapid and scalable manner via digital light projection (DLP) technology. This enables localized modulation of biophysical properties such as stiffness and microarchitecture as well as precise control over spatial distribution and concentration of immobilized functional groups. As such, well-defined properties can be directly incorporated using a single platform to produce desired tissue-specific functions within bioprinted constructs. We demonstrated high viability of encapsulated endothelial cells and human cardiomyocytes using our dual process and fabricated tissue constructs functionalized with VEGF peptide mimics to induce guided endothelial cell growth for programmable vascularization. This work represents a pivotal step in engineering multifunctional constructs with unprecedented control, precision, and versatility for the rational design of biomimetic tissues.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Collagenase from Clostridium histolyticum, Type IA, 0.5-5.0 FALGPA units/mg solid, ≥125 CDU/mg solid, For general use
Sigma-Aldrich
cis-5-Norbornene-endo-2,3-dicarboxylic anhydride, 99%
Sigma-Aldrich
N-Hydroxysulfosuccinimide sodium salt, ≥98% (HPLC)
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D
Sigma-Aldrich
Dimethyl phenylphosphonite, 97%
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, commercial grade, powder
Sigma-Aldrich
Lithium bromide, ReagentPlus®, ≥99%
Sigma-Aldrich
2,4,6-Trimethylbenzoyl chloride, 97%
Sigma-Aldrich
INVIVO-GEL VEGF bioink, suitable for 3D bioprinting applications
Sigma-Aldrich
Gelatin from porcine skin, gel strength 300, Type A