Skip to Content
Merck
  • Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells.

Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells.

Nature communications (2020-12-12)
Clara Gómez-Aleza, Bastien Nguyen, Guillermo Yoldi, Marina Ciscar, Alexandra Barranco, Enrique Hernández-Jiménez, Marion Maetens, Roberto Salgado, Maria Zafeiroglou, Pasquale Pellegrini, David Venet, Soizic Garaud, Eva M Trinidad, Sandra Benítez, Peter Vuylsteke, Laura Polastro, Hans Wildiers, Philippe Simon, Geoffrey Lindeman, Denis Larsimont, Gert Van den Eynden, Chloé Velghe, Françoise Rothé, Karen Willard-Gallo, Stefan Michiels, Purificación Muñoz, Thierry Walzer, Lourdes Planelles, Josef Penninger, Hatem A Azim, Sherene Loi, Martine Piccart, Christos Sotiriou, Eva González-Suárez
ABSTRACT

Most breast cancers exhibit low immune infiltration and are unresponsive to immunotherapy. We hypothesized that inhibition of the receptor activator of nuclear factor-κB (RANK) signaling pathway may enhance immune activation. Here we report that loss of RANK signaling in mouse tumor cells increases leukocytes, lymphocytes, and CD8+ T cells, and reduces macrophage and neutrophil infiltration. CD8+ T cells mediate the attenuated tumor phenotype observed upon RANK loss, whereas neutrophils, supported by RANK-expressing tumor cells, induce immunosuppression. RANKL inhibition increases the anti-tumor effect of immunotherapies in breast cancer through a tumor cell mediated effect. Comparably, pre-operative single-agent denosumab in premenopausal early-stage breast cancer patients from the Phase-II D-BEYOND clinical trial (NCT01864798) is well tolerated, inhibits RANK pathway and increases tumor infiltrating lymphocytes and CD8+ T cells. Higher RANK signaling activation in tumors and serum RANKL levels at baseline predict these immune-modulatory effects. No changes in tumor cell proliferation (primary endpoint) or other secondary endpoints are observed. Overall, our preclinical and clinical findings reveal that tumor cells exploit RANK pathway as a mechanism to evade immune surveillance and support the use of RANK pathway inhibitors to prime luminal breast cancer for immunotherapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Proteinase, bacterial, Type XXIV, 7.0-14.0 units/mg solid, lyophilized powder