Skip to Content
Merck
  • DMA-tudor interaction modules control the specificity of in vivo condensates.

DMA-tudor interaction modules control the specificity of in vivo condensates.

Cell (2021-06-12)
Edward M Courchaine, Andrew E S Barentine, Korinna Straube, Dong-Ryoung Lee, Joerg Bewersdorf, Karla M Neugebauer
ABSTRACT

Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MS023 hydrochloride, ≥98% (HPLC)
Sigma-Aldrich
Anti-Mouse-IgG - Atto 647N antibody produced in goat, contains 50% glycerol as stabilizer
Sigma-Aldrich
Anti-Rabbit-IgG - Atto 647N antibody produced in goat, 1 mg/mL IgG
Sigma-Aldrich
Anti-Rabbit IgG - Atto 594 antibody produced in goat
Sigma-Aldrich
EPZ015666, ≥98% (HPLC)