Skip to Content
Merck
  • Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein.

Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein.

Nature medicine (1997-11-14)
J Wijnholds, R Evers, M R van Leusden, C A Mol, G J Zaman, U Mayer, J H Beijnen, M van der Valk, P Krimpenfort, P Borst
ABSTRACT

The multidrug resistance-associated protein (MRP) mediates the cellular excretion of many drugs, glutathione S-conjugates (GS-X) of lipophilic xenobiotics and endogenous cysteinyl leukotrienes. Increased MRP levels in tumor cells can cause multidrug resistance (MDR) by decreasing the intracellular drug concentration. The physiological role or roles of MRP remain ill-defined, however. We have generated MRP-deficient mice by using embryonic stem cell technology. Mice homozygous for the mrp mutant allele, mrp-/-, are viable and fertile, but their response to an inflammatory stimulus is impaired. We attribute this defect to a decreased secretion of leukotriene C4 (LTC4) from leukotriene-synthesizing cells. Moreover, the mrp-/- mice are hypersensitive to the anticancer drug etoposide. The phenotype of mrp-/- mice is consistent with a role for MRP as the main LTC4-exporter in leukotriene-synthesizing cells, and as an important drug exporter in drug-sensitive cells. Our results suggest that this ubiquitous GS-X pump is dispensable in mice, making treatment of MDR with MRP-specific reversal agents potentially feasible.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MRP1 human, membrane preparation for ATPase Assay, recombinant, expressed in baculovirus infected Sf9 cells
Sigma-Aldrich
SB-MRP1-Sf9, membrane preparation for Vesicular Transport Assays, recombinant, expressed in baculovirus infected Sf9 cells