Skip to Content
Merck
  • Tulp3 Regulates Renal Cystogenesis by Trafficking of Cystoproteins to Cilia.

Tulp3 Regulates Renal Cystogenesis by Trafficking of Cystoproteins to Cilia.

Current biology : CB (2019-02-26)
Sun-Hee Hwang, Bandarigoda N Somatilaka, Hemant Badgandi, Vivek Reddy Palicharla, Rebecca Walker, John M Shelton, Feng Qian, Saikat Mukhopadhyay
ABSTRACT

Polycystic kidney disease proteins, polycystin-1 and polycystin-2, localize to primary cilia. Polycystin knockouts have severe cystogenesis compared to ciliary disruption, whereas simultaneous ciliary loss suppresses excessive cyst growth. These data suggest the presence of a cystogenic activator that is inhibited by polycystins and an independent but relatively minor cystogenic inhibitor, either of which are cilia dependent. However, current genetic models targeting cilia completely ablate the compartment, making it difficult to uncouple cystoprotein function from ciliary localization. Thus, the role of cilium-generated signaling in cystogenesis is unclear. We recently demonstrated that the tubby family protein Tulp3 determines ciliary trafficking of polycystins in kidney collecting duct cells without affecting protein levels or cilia. Here, we demonstrate that embryonic-stage, nephron-specific Tulp3 knockout mice developed cystic kidneys, while retaining intact cilia. Cystic kidneys showed increased mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), mTOR, and persistently high cyclic AMP (cAMP) signaling, suggesting contribution of multiple factors to cystogenesis. Based on kidney-to-body-weight ratio, cystic index, and epithelial proliferation in developing tubules or cysts, the severity of cystogenesis upon Tulp3 deletion was intermediate between that caused by loss of polycystin-1 or cilia. However, concomitant Tulp3 loss did not inhibit cystogenesis in polycystin-1 knockouts, unlike ciliary disruption. Interestingly, ciliary trafficking of the small guanosine triphosphatase (GTPase) Arl13b, loss of which causes cystogenic severity similar to ciliary loss, was reduced prior to cyst initiation. Thus, we propose that cystogenesis in Tulp3 mutants results from a reduction of ciliary levels of polycystins, Arl13b, and Arl13b-dependent lipidated cargoes. Arl13b might be the ciliary factor that represses cystogenesis distinct from polycystins.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nystatin Suspension, suspension, 10,000 unit/mL in DPBS, BioReagent, suitable for cell culture
Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium - high glucose, With 4500 mg/L glucose, L-glutamine, and sodium bicarbonate, without sodium pyruvate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
5-Bromo-2′-deoxyuridine, ≥99% (HPLC)
Sigma-Aldrich
GenElute Mammalian Total RNA Miniprep Kit, sufficient for 350 purifications
Sigma-Aldrich
2-Fluoro-6-(trifluoromethyl)aniline, 98%
Sigma-Aldrich
MEM Non-essential Amino Acid Solution (100×), without L-glutamine, liquid, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
N6,2′-O-Dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt, ≥96% (HPLC), powder
Sigma-Aldrich
Hyaluronidase from sheep testes, Type V, lyophilized powder, ≥1,500 units/mg solid
Sigma-Aldrich
Monoclonal Anti-Tubulin, Acetylated antibody produced in mouse, clone 6-11B-1, ascites fluid
Sigma-Aldrich
Collagen Type IV from human cell culture, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
KiCqStart® One-Step Probe RT-qPCR ReadyMix, for Bio-Rad, Cepheid, Eppendorf, Illumina, Corbett, and Roche systems