Skip to Content
Merck
  • Epigenetic SMAD3 Repression in Tumor-Associated Fibroblasts Impairs Fibrosis and Response to the Antifibrotic Drug Nintedanib in Lung Squamous Cell Carcinoma.

Epigenetic SMAD3 Repression in Tumor-Associated Fibroblasts Impairs Fibrosis and Response to the Antifibrotic Drug Nintedanib in Lung Squamous Cell Carcinoma.

Cancer research (2019-11-07)
Rafael Ikemori, Marta Gabasa, Paula Duch, Miguel Vizoso, Paloma Bragado, Marselina Arshakyan, Iuliana-Cristiana Luis, Albert Marín, Sebastian Morán, Manuel Castro, Gemma Fuster, Sabrina Gea-Sorli, Toni Jauset, Laura Soucek, Luis M Montuenga, Manel Esteller, Eduard Monsó, Victor Ivo Peinado, Pere Gascon, Cristina Fillat, Frank Hilberg, Noemí Reguart, Jordi Alcaraz
ABSTRACT

The tumor-promoting fibrotic stroma rich in tumor-associated fibroblasts (TAF) is drawing increased therapeutic attention. Intriguingly, a trial with the antifibrotic drug nintedanib in non-small cell lung cancer reported clinical benefits in adenocarcinoma (ADC) but not squamous cell carcinoma (SCC), even though the stroma is fibrotic in both histotypes. Likewise, we reported that nintedanib inhibited the tumor-promoting fibrotic phenotype of TAFs selectively in ADC. Here we show that tumor fibrosis is actually higher in ADC-TAFs than SCC-TAFs in vitro and patient samples. Mechanistically, the reduced fibrosis and nintedanib response of SCC-TAFs was associated with increased promoter methylation of the profibrotic TGFβ transcription factor SMAD3 compared with ADC-TAFs, which elicited a compensatory increase in TGFβ1/SMAD2 activation. Consistently, forcing global DNA demethylation of SCC-TAFs with 5-AZA rescued TGFβ1/SMAD3 activation, whereas genetic downregulation of SMAD3 in ADC-TAFs and control fibroblasts increased TGFβ1/SMAD2 activation, and reduced their fibrotic phenotype and antitumor responses to nintedanib in vitro and in vivo. Our results also support that smoking and/or the anatomic location of SCC in the proximal airways, which are more exposed to cigarette smoke particles, may prime SCC-TAFs to stronger SMAD3 epigenetic repression, because cigarette smoke condensate selectively increased SMAD3 promoter methylation. Our results unveil that the histotype-specific regulation of tumor fibrosis in lung cancer is mediated through differential SMAD3 promoter methylation in TAFs and provide new mechanistic insights on the selective poor response of SCC-TAFs to nintedanib. Moreover, our findings support that patients with ADC may be more responsive to antifibrotic drugs targeting their stromal TGFβ1/SMAD3 activation. SIGNIFICANCE: This study implicates the selective epigenetic repression of SMAD3 in SCC-TAFs in the clinical failure of nintedanib in SCC and supports that patients with ADC may benefit from antifibrotic drugs targeting stromal TGFβ1/SMAD3.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-β-Actin antibody, Mouse monoclonal, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
Anti-Actin, α-Smooth Muscle antibody, Mouse monoclonal, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Anti-phospho-Smad3 (Ser423/425) Antibody, from rabbit