Skip to Content
Merck
  • Differential roles of ARID1B in excitatory and inhibitory neural progenitors in the developing cortex.

Differential roles of ARID1B in excitatory and inhibitory neural progenitors in the developing cortex.

Scientific reports (2021-02-18)
Jeffrey J Moffat, Eui-Man Jung, Minhan Ka, Byeong Tak Jeon, Hyunkyoung Lee, Woo-Yang Kim
ABSTRACT

Genetic evidence indicates that haploinsufficiency of ARID1B causes intellectual disability (ID) and autism spectrum disorder (ASD), but the neural function of ARID1B is largely unknown. Using both conditional and global Arid1b knockout mouse strains, we examined the role of ARID1B in neural progenitors. We detected an overall decrease in the proliferation of cortical and ventral neural progenitors following homozygous deletion of Arid1b, as well as altered cell cycle regulation and increased cell death. Each of these phenotypes was more pronounced in ventral neural progenitors. Furthermore, we observed decreased nuclear localization of β-catenin in Arid1b-deficient neurons. Conditional homozygous deletion of Arid1b in ventral neural progenitors led to pronounced ID- and ASD-like behaviors in mice, whereas the deletion in cortical neural progenitors resulted in minor cognitive deficits. This study suggests an essential role for ARID1B in forebrain neurogenesis and clarifies its more pronounced role in inhibitory neural progenitors. Our findings also provide insights into the pathogenesis of ID and ASD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Tbr2 Antibody, from rabbit, purified by affinity chromatography
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Anti-CUX1, (N-terminal) antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Anti-Parvalbumin Antibody, ascites fluid, clone PARV-19, Chemicon®