Skip to Content
Merck
  • Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability.

Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability.

Neuron (2012-09-25)
Gulayse Ince-Dunn, Hirotaka J Okano, Kirk B Jensen, Woong-Yang Park, Ru Zhong, Jernej Ule, Aldo Mele, John J Fak, Chingwen Yang, Chaolin Zhang, Jong Yoo, Margaret Herre, Hideyuki Okano, Jeffrey L Noebels, Robert B Darnell
ABSTRACT

The paraneoplastic neurologic disorders target several families of neuron-specific RNA binding proteins (RNABPs), revealing that there are unique aspects of gene expression regulation in the mammalian brain. Here, we used HITS-CLIP to determine robust binding sites targeted by the neuronal Elav-like (nElavl) RNABPs. Surprisingly, nElav protein binds preferentially to GU-rich sequences in vivo and in vitro, with secondary binding to AU-rich sequences. nElavl null mice were used to validate the consequence of these binding events in the brain, demonstrating that they bind intronic sequences in a position dependent manner to regulate alternative splicing and to 3'UTR sequences to regulate mRNA levels. These controls converge on the glutamate synthesis pathway in neurons; nElavl proteins are required to maintain neurotransmitter glutamate levels, and the lack of nElavl leads to spontaneous epileptic seizure activity. The genome-wide analysis of nElavl targets reveals that one function of neuron-specific RNABPs is to control excitation-inhibition balance in the brain.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glutaminase from Escherichia coli, Grade VII, lyophilized powder, 500-1,500 units/mg protein
Sigma-Aldrich
Glutaminase from Escherichia coli, Grade V, lyophilized powder, 50-200 units/mg protein