Skip to Content
Merck
  • Aspect ratio dependent fluorescence quenching of eosin Y by gold nanorods.

Aspect ratio dependent fluorescence quenching of eosin Y by gold nanorods.

Journal of nanoscience and nanotechnology (2014-04-18)
Guojun Weng, Jianjun Li, Li Zhang, Junwu Zhao
ABSTRACT

Gold nanorods of different aspect ratios had been synthesized using seed mediated growth method. The formed gold nanorods had been characterized by the absorption and transmission electron microscopy (TEM) measurements. The obtained gold nanorods were used to study the quenched effect on fluorescence of Eosin Y. Experimental results revealed that Eosin Y molecules adsorbed on the metallic surfaces, suffering strong quenching of their fluorescence and the quenching efficiency was different for different aspect ratio. Using dielectric coated gold nanorods model, the probable mechanism of aspect ratio dependent quenching efficiency was obtained by numerical calculation based on fluorescence resonance energy transfer and quasi-static theory. The calculation results showed that the non-monotonic changing of fluorescence quenching was attributed to competing effects of aspect ratio and the dielectric constant of coated shell on surface plasmon resonance.

MATERIALS
Product Number
Brand
Product Description

Gold, rod, 6mm, diameter 6.0mm, as drawn, 99.95%
Gold, rod, 50mm, diameter 3.0mm, as drawn, 99.95%
Gold, insulated wire, 1m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyimide insulation, 99.99%
Gold, insulated wire, 2m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, insulated wire, 0.5m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, insulated wire, 5m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyester insulation, 99.99%
Gold, tube, 200mm, outside diameter 2.0mm, inside diameter 1.8mm, wall thickness 0.1mm, as drawn, 99.95%
Gold, insulated wire, 0.5m, conductor diameter 0.125mm, insulation thickness 0.014mm, polyester insulation, 99.99%
Gold, tube, 50mm, outside diameter 8mm, inside diameter 7.8mm, wall thickness 0.1mm, as drawn, 99.95%
Sigma-Aldrich
Eosin Y solution, 5 wt. % in H2O
Sigma-Aldrich
Gold, wire, diam. 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, beads, 1-6 mm, 99.999% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 1.0 mm, 99.997% trace metals basis
Sigma-Aldrich
Gold, powder, <45 μm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.1 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.05 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Eosin Y disodium salt, Dye content ≥85 %
Sigma-Aldrich
Eosin Y, Dye content ~99 %
Sigma-Aldrich
Eosin Y disodium salt, certified by the Biological Stain Commission
Gold, rod, 100mm, diameter 2.0mm, as drawn, 99.95%
Gold, tube, 100mm, outside diameter 10.0mm, inside diameter 9.7mm, wall thickness 0.15mm, as drawn, 99.95%
Gold, microfoil, disks, 10mm, thinness 0.01μm, specific density 20.7μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, insulated wire, 0.5m, conductor diameter 0.025mm, insulation thickness 0.005mm, polyester insulation, 99.99%
Gold, tube, 200mm, outside diameter 1.0mm, inside diameter 0.5mm, wall thickness 0.25mm, as drawn, 99.95%