Skip to Content
Merck
  • Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer.

Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer.

Carcinogenesis (2014-02-08)
Damian Ryszawy, Michał Sarna, Monika Rak, Katarzyna Szpak, Sylwia Kędracka-Krok, Marta Michalik, Maciej Siedlar, Ewa Zuba-Surma, Kvetoslava Burda, Włodzimierz Korohoda, Zbigniew Madeja, Jarosław Czyż
ABSTRACT

Suppressive function of connexin(Cx)43 in carcinogenesis was recently contested by reports that showed a multifaceted function of Cx43 in cancer progression. These studies did not attempt to model the dynamics of intratumoral heterogeneity involved in the metastatic cascade. An unorthodox look at the phenotypic heterogeneity of prostate cancer cells in vitro enabled us to identify links between Cx43 functions and Snail-1-regulated functional speciation of invasive cells. Incomplete Snail-1-dependent phenotypic shifts accounted for the formation of phenotypically stable subclones of AT-2 cells. These subclones showed diverse predilection for invasive behavior. High Snail-1 and Cx43 levels accompanied high motility and nanomechanical elasticity of the fibroblastoid AT-2_Fi2 subclone, which determined its considerable invasiveness. Transforming growth factor-β and ectopic Snail-1 overexpression induced invasiveness and Cx43 expression in epithelioid AT-2 subclones and DU-145 cells. Functional links between Snail-1 function and Cx43 expression were confirmed by Cx43 downregulation and phenotypic shifts in AT-2_Fi2, DU-145 and MAT-LyLu cells upon Snail-1 silencing. Corresponding morphological changes and Snail-1 downregulation were seen upon Cx43 silencing in AT-2_Fi2 cells. This indicates that feedback loops between both proteins regulate cell invasive behavior. We demonstrate that Cx43 may differentially predispose prostate cancer cells for invasion in a coupling-dependent and coupling-independent manner. When extrapolated to in vivo conditions, these data show the complexity of Cx43 functions during the metastatic cascade of prostate cancer. They may explain how Cx43 confers a selective advantage during cooperative invasion of clonally evolving, invasive prostate cancer cell subpopulations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-SNAI2 antibody produced in mouse, clone 3C12, purified immunoglobulin, buffered aqueous solution
Supelco
Hydrocortisone, Pharmaceutical Secondary Standard; Certified Reference Material
Hydrocortisone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Monoclonal Anti-Vinculin antibody produced in mouse, clone hVIN-1, ascites fluid
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
Sigma-Aldrich
Monoclonal Anti-Cytokeratin, pan (Mixture) antibody produced in mouse, clone C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2, ascites fluid
Sigma-Aldrich
Anti-Connexin-43 antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Monoclonal Anti-Connexin-43 antibody produced in mouse, clone CXN-6, ascites fluid
USP
Hydrocortisone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Anti-phospho-SMAD2 (pSer467) antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Anti-Twist1 antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Hydrocortisone, British Pharmacopoeia (BP) Assay Standard
Sigma-Aldrich
Anti-N-Cadherin antibody, Mouse monoclonal, clone GC-4, purified from hybridoma cell culture
Hydrocortisone for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Calcein, Used for the fluorometric determination of calcium and EDTA titration of calcium in the presence of magnesium.
Sigma-Aldrich
Monoclonal Anti-Vimentin antibody produced in mouse, clone VIM-13.2, ascites fluid
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, clone DM1A, ascites fluid