Skip to Content
Merck

Oxidation inhibits iron-induced blood coagulation.

Current drug targets (2012-11-23)
Etheresia Pretorius, Janette Bester, Natasha Vermeulen, Boguslaw Lipinski
ABSTRACT

Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium selenite, 99%
Sigma-Aldrich
Iron(III) chloride, anhydrous, powder, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium selenite, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Sodium selenite, γ-irradiated, lyophilized powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium selenite, anhydrous, ≥90.0% (RT)
Sigma-Aldrich
Sodium selenite, SAJ first grade, ≥90.0%
Sigma-Aldrich
Iron(III) chloride hexahydrate, SAJ first grade, ≥98.0%
Sigma-Aldrich
Iron(III) chloride hexahydrate, JIS special grade, ≥99.0%
Sigma-Aldrich
Sodium selenite, JIS special grade, ≥97.0%
Sigma-Aldrich
Iron(III) chloride, CP
Sigma-Aldrich
Iron(III) chloride, sublimed grade, ≥99.9% trace metals basis
Sigma-Aldrich
Iron(III) chloride hexahydrate, puriss. p.a., reag. Ph. Eur., ≥99%
Sigma-Aldrich
Iron(III) chloride hexahydrate, ACS reagent, 97%
Sigma-Aldrich
Iron(III) chloride hexahydrate, puriss. p.a., ACS reagent, crystallized, 98.0-102% (RT)
Sigma-Aldrich
Iron(III) chloride hexahydrate, reagent grade, ≥98%, chunks
Millipore
TDA Reagent, suitable for microbiology
Sigma-Aldrich
Iron(III) chloride solution, 0.2 M in 2-methyltetrahydrofuran
Sigma-Aldrich
Iron(III) chloride solution, CP, 38%
Sigma-Aldrich
Iron(III) chloride solution, purum, 45% FeCl3 basis