Skip to Content
Merck
  • Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics.

Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics.

Progress in nuclear magnetic resonance spectroscopy (2013-10-03)
John M Franck, Anna Pavlova, John A Scott, Songi Han
ABSTRACT

Liquid state Overhauser effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (∼10GHz), frequency and ¹H nuclear magnetic resonance (NMR) at ∼15 MHz. It requires only a standard continuous wave (cw) ESR spectrometer with an NMR probe inserted or built into an X-band cavity. We focus on reviewing a new and powerful manifestation of ODNP as a high frequency NMR relaxometry tool that probes dipolar cross relaxation between the electron spins and the ¹H nuclear spins at X-band frequencies. This technique selectively measures the translational mobility of water within a volume extending 0.5-1.5 nm outward from a nitroxide radical spin probe that is attached to a targeted site of a macromolecule. It allows one to study the dynamics of water that hydrates or permeates the surface or interior of proteins, polymers, and lipid membrane vesicles. We begin by reviewing the recent advances that have helped develop ODNP into a tool for mapping the dynamic landscape of hydration water with sub-nanometer locality. In order to bind this work coherently together and to place it in the context of the extensive body of research in the field of NMR relaxometry, we then rephrase the analytical model and extend the description of the ODNP-derived NMR signal enhancements. This extended model highlights several aspects of ODNP data analysis, including the importance of considering all possible effects of microwave sample heating, the need to consider the error associated with various relaxation rates, and the unique ability of ODNP to probe the electron-¹H cross-relaxation process, which is uniquely sensitive to fast (tens of ps) dynamical processes. By implementing the relevant corrections in a stepwise fashion, this paper draws a consensus result from previous ODNP procedures and then shows how such data can be further corrected to yield clear and reproducible saturation of the NMR hyperpolarization process. Finally, drawing on these results, we broadly survey the previous ODNP dynamics literature. We find that the vast number of published, empirical hydration dynamics data can be reproducibly classified into regimes of surface, interfacial, vs. buried water dynamics.

MATERIALS
Product Number
Brand
Product Description

Supelco
Water, for TOC analysis
Supelco
Water, suitable for ion chromatography
Sigma-Aldrich
Water, BioPerformance Certified
Supelco
Water, ACS reagent, for ultratrace analysis
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Distilled water
Sigma-Aldrich
Distilled water, suitable for HPLC
Supelco
Density Standard 998 kg/m3, H&D Fitzgerald Ltd. Quality
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Supelco
Water, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
Water, tested according to Ph. Eur.
Sigma-Aldrich
Water, suitable for HPLC
Sigma-Aldrich
Water, HPLC Plus
Sigma-Aldrich
Water, ACS reagent
Sigma-Aldrich
Water, Deionized
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C