Skip to Content
Merck
  • Organo-palladium(II) complexes bearing unsymmetrical N,N,N-pincer ligands: synthesis, structures and oxidatively induced coupling reactions.

Organo-palladium(II) complexes bearing unsymmetrical N,N,N-pincer ligands: synthesis, structures and oxidatively induced coupling reactions.

Dalton transactions (Cambridge, England : 2003) (2015-03-20)
Luka A Wright, Eric G Hope, Gregory A Solan, Warren B Cross, Kuldip Singh
ABSTRACT

The 2-(2′-aniline)-6-imine-pyridines, 2-(C6H4-2′-NH2)-6-(CMe=NAr)C5H3N (Ar = 4-i-PrC6H4 (HL1a), 2,6-i-Pr2C6H3 (HL1b)), have been synthesised via sequential Stille cross-coupling, deprotection and condensation steps from 6-tributylstannyl-2-(2-methyl-1,3-dioxolan-2-yl)pyridine and 2-bromonitrobenzene. The palladium(II) acetate N,N,N-pincer complexes, [{2-(C6H4-2′-NH)-6-(CMe=NAr)C5H3N}Pd(OAc)] (Ar = 4-i-PrC6H4 (1a), 2,6-i-Pr2C6H3 (1b)), can be prepared by reacting HL1 with Pd(OAc)2 or, in the case of 1a, more conveniently by the template reaction of ketone 2-(C6H4-2′-NH2)-6-(CMe=O)C5H3N, Pd(OAc)2 and 4-isopropylaniline; ready conversion of 1 to their chloride analogues, [{2-(C6H4-2′-NH)-6-(CMe=NAr)C5H3N}PdCl] (Ar = 4-i-PrC6H4 (2a), 2,6-i-Pr2C6H3 (2b)), has been demonstrated. The phenyl-containing complexes, [{2-(C6H4-2′-NH)-6-(CMe=NAr)C5H3N}PdPh] (Ar = 4-i-PrC6H4 (3a), 2,6-i-Pr2C6H3 (3b)), can be obtained by treating HL1 with (PPh3)2PdPh(Br) in the presence of NaH or with regard to 3a, by the salt elimination reaction of 2a with phenyllithium. Reaction of 2a with silver tetrafluoroborate or triflate in the presence of acetonitrile allows access to cationic [{2-(C6H4-2′-NH)-6-(CMe=N(4-i-PrC6H4)C5H3N}Pd(NCMe)][X] (X = BF4 (4), X = O3SCF3 (5)), respectively; the pyridine analogue of 5, [{2-(C6H4-2′-NH)-6-(CMe=N(4-i-PrC6H4)C5H3N}Pd(NC5H5)][O3SCF3] (5′), is also reported. Oxidation of phenyl-containing 3a with one equivalent of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor™) in acetonitrile at low temperature leads to a new palladium species that slowly decomposes to give 4 and biphenyl; biphenyl formation is also observed upon reaction of 3a with XeF2. However, no such oxidatively induced coupling occurs when using 3b. Single crystal X-ray diffraction studies have been performed on HL1b, 1a, 1b, 2a, 2b, 3a, 3b and 5′.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Tin(II) chloride dihydrate, JIS special grade, ≥97.0%
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Tin(II) chloride dihydrate, suitable for determination of toxic metals, ≥96.0%
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
N-Bromoacetamide, powder
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Tin(II) chloride dihydrate, ≥99.97% trace metals basis
Sigma-Aldrich
2,6-Diisopropylaniline, 97%
Sigma-Aldrich
2,6-Diisopropylaniline, technical grade, 90%
Supelco
Methanol, analytical standard
Supelco
Tin(II) chloride dihydrate, suitable for AAS
Sigma-Aldrich
Tin(II) chloride dihydrate, ≥99.99% trace metals basis
Sigma-Aldrich
4-Isopropylaniline, 99%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Tin(II) chloride dihydrate, SAJ first grade, ≥90.0%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Tin(II) chloride dihydrate, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)