Skip to Content

Beginning October 1st, 2024, the Life Science business of Merck Ltd. Korea will implement list price increases on our products. Learn More

Merck
  • Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice.

Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice.

American journal of physiology. Renal physiology (2019-08-15)
Ana Andres-Hernando, Miguel A Lanaspa, Masanari Kuwabara, David J Orlicky, Christina Cicerchi, Elise Bales, Gabriela E Garcia, Carlos A Roncal-Jimenez, Yuka Sato, Richard J Johnson
ABSTRACT

Obesity and metabolic syndrome are well-known risk factors for chronic kidney disease (CKD); however, less is known about the mechanism(s) by which metabolic syndrome might accelerate kidney disease. We hypothesized that metabolic syndrome should accelerate the development of kidney disease and that it might be associated with alterations in energy metabolism. We studied the pound mouse (which develops early metabolic syndrome due to a leptin receptor deletion) and wild-type littermates and compared the level of renal injury and muscle wasting after equivalent injury with oral adenine. Renal function, histology, and biochemical analyses were performed. The presence of metabolic syndrome was associated with earlier development of renal disease (12 mo) and earlier mortality in pound mice compared with controls. After administration of adenine, kidney disease was worse in pound mice, and this was associated with greater tubular injury with a decrease in kidney mitochondria, lower tissue ATP levels, and worse oxidative stress. Pound mice with similar levels of renal function as adenine-treated wild-type mice also showed worse sarcopenia, with lower tissue ATP and intracellular phosphate levels. In summary, our data demonstrate that obesity and metabolic syndrome accelerate the progression of CKD and worsen CKD-dependent sarcopenia. Both conditions are associated with renal alterations in energy metabolism and lower tissue ATP levels secondary to mitochondrial dysfunction and reduced mitochondrial number.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-ACO2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
100 μL
Please contact Customer Service for Availability
₩864,983
Sigma-Aldrich
Anti-COX4 Antibody, from rabbit, purified by affinity chromatography
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
25 μg
1 Estimated to ship on March 24, 2025
Details...
₩210,816
100 μg
Please contact Customer Service for Availability
₩693,042