Skip to Content
Merck
  • Noninvasive monitoring of HPMA copolymer-RGDfK conjugates by magnetic resonance imaging.

Noninvasive monitoring of HPMA copolymer-RGDfK conjugates by magnetic resonance imaging.

Pharmaceutical research (2009-01-23)
Bahar Zarabi, Mark P Borgman, Jiachen Zhuo, Rao Gullapalli, Hamidreza Ghandehari
ABSTRACT

To evaluate the tumor targeting potential of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-gadolinium(Gd)-RGDfK conjugates by magnetic resonance (MR) T1-mapping. HPMA copolymers with and without RGDfK were synthesized to incorporate side chains for Gd chelation. The conjugates were characterized by their side-chain contents and r(1) relaxivity. In vitro integrin-binding affinities of polymeric conjugates were assessed via competitive cell binding assays on HUVEC endothelial cells and MDA-MB-231 breast cancer cells. In vivo MR imaging was performed on MDA-MB-231 tumor-bearing SCID mice at different time points using non-targetable and targetable polymers. The specificity of alphavbeta3 targeting was assessed by using non-paramagnetic targetable polymer to block alphavbeta3 integrins followed by injection of paramagnetic targetable polymers after 2 h. The polymer conjugates showed relaxivities higher than Gd-DOTA. Endothelial cell binding studies showed that IC(50) values for the copolymer with RGDfK binding to alphavbeta3 integrin-positive HUVEC and MDA-MB-231 cells were similar to that of free peptide. Significantly lower T1 values were observed at the tumor site after 2 h using targetable conjugate (p < 0.012). In vivo blocking study showed significantly higher T1 values (p < 0.045) compared to targetable conjugate. These results demonstrate the potential of this conjugate as an effective targetable MR contrast agent for tumor imaging and therapy monitoring.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexamethylphosphoramide, purum, ≥98.0% (GC)
Sigma-Aldrich
Hexamethylphosphoramide, 99%
Sigma-Aldrich
Hexamethylphosphoramide, absolute, over molecular sieve (H2O ≤0.03%), ≥98.0% (GC)