Skip to Content
Merck
  • A new crystal form of MshB from Mycobacterium tuberculosis with glycerol and acetate in the active site suggests the catalytic mechanism.

A new crystal form of MshB from Mycobacterium tuberculosis with glycerol and acetate in the active site suggests the catalytic mechanism.

Acta crystallographica. Section D, Biological crystallography (2012-10-24)
Simon Gareth Broadley, James Conrad Gumbart, Brandon William Weber, Mohlopheni Jackson Marakalala, Daniel Jacobus Steenkamp, Bryan Trevor Sewell
ABSTRACT

MshB, a zinc-based deacetylase, catalyses a step in the mycothiol biosynthetic pathway that involves the deacetylation of 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-D-myo-inositol (GlcNAc-Ins), via cleavage of an amide bond, to 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-D-myo-inositol (GlcN-Ins) and acetate. In this study, MshB was expressed, purified and crystallized. A new crystal form was encountered in 0.1 M sodium acetate, 0.2 M ammonium sulfate, 25% PEG 4000 pH 4.6. The crystals diffracted to 1.95 Å resolution and the resulting electron-density map revealed glycerol and the reaction product, acetate, in the active site. These ligands enabled the natural substrate GlcNAc-Ins to be modelled in the active site with some certainty. One acetate O atom is hydrogen bonded to Tyr142 and is located 2.5 Å from the catalytic zinc. The other acetate O atom is located 2.7 Å from a carboxylate O atom of Asp15. This configuration strongly suggests that Asp15 acts both as a general base catalyst in the nucleophilic attack of water on the amide carbonyl C atom and in its protonated form acts as a general acid to protonate the amide N atom. The configuration of Tyr142 differs from that observed previously in crystal structures of MshB (PDB entries 1q74 and 1q7t) and its location provides direct structural support for recently published biochemical and mutational studies suggesting that this residue is involved in a conformational change on substrate binding and contributes to the oxyanion hole that stabilizes the tetrahedral intermediate.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonium sulfate-14N2 solution, 40 wt. % in H2O, 99.99 atom % 14N
Sigma-Aldrich
Ammonium-14N2 sulfate solution, 40 wt. % in H2O, 99.99 atom % 14N
Sigma-Aldrich
Ammonium sulfate, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, BioXtra, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, for molecular biology, ≥99.0%
Supelco
Ammonium sulfate, analytical standard, for Nitrogen Determination According to Kjeldahl Method, traceable to NIST SRM 194
Sigma-Aldrich
Ammonium sulfate, 99.999% trace metals basis
Sigma-Aldrich
Ammonium sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, anhydrous, Redi-Dri, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, BioUltra, ≥99.0% (T)