Skip to Content
Merck
  • Gold nanoparticles enhanced electroporation for mammalian cell transfection.

Gold nanoparticles enhanced electroporation for mammalian cell transfection.

Journal of biomedical nanotechnology (2014-04-23)
Yingbo Zu, Shuyan Huang, Wei-Ching Liao, Yang Lu, Shengnian Wang
ABSTRACT

Electroporation figured prominently as an effective nonviral gene delivery approach for its balance on the transfection efficiency and cell viability, no restrictions of probe or cell type, and operation simplicity. The commercial electroporation systems have been widely adopted in the past two decades while still carry drawbacks associated with the high applied electric voltage, unsatisfied delivery efficiency, and/or low cell viability. By adding highly conductive gold nanoparticles (AuNPs) in electroporation solution, we demonstrated enhanced electroporation performance (i.e., better DNA delivery efficiency and higher cell viability) on mammalian cells from two different aspects: the free, naked AuNPs reduce the resistance of the electroporation solution so that the local pulse strength on cells was enhanced; targeting AuNPs (e.g., Tf-AuNPs) were brought to the cell membrane to work as virtual microelectrodes to porate cells with limited area from many different sites. The enhancement was confirmed with leukemia cells in both a commercial batch electroporation system and a home-made flow-through system using pWizGFP plasmid DNA probes. Such enhancement depends on the size, concentration, and the mixing ratio of free AuNPs/Tf-AuNPs. An equivalent mixture of free AuNPs and Tf-AuNPs exhibited the best enhancement with the transfection efficiency increased 2-3 folds at minimum sacrifice of cell viability. This new delivery concept, the combination of nanoparticles and electroporation technologies, may stimulate various in vitro and in vivo biomedical applications which rely on the efficient delivery of nucleic acids, anticancer drugs, or other therapeutic materials.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gold, wire, diam. 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, beads, 1-6 mm, 99.999% trace metals basis
Sigma-Aldrich
Gold, powder, <45 μm, 99.99% trace metals basis
Sigma-Aldrich
Gold, rod, diam. 3.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.05 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.1 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 1.0 mm, 99.997% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.5 mm, 99.99% trace metals basis
Gold, tube, 50mm, outside diameter 8mm, inside diameter 7.8mm, wall thickness 0.1mm, as drawn, 99.95%
Gold, insulated wire, 1m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyester insulation, 99.99%
Gold, rod, 100mm, diameter 2.0mm, as drawn, 99.95%
Gold, insulated wire, 0.1m, conductor diameter 0.125mm, insulation thickness 0.016mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.1μm, specific density 204.1μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, insulated wire, 1m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.5μm, specific density 966μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, insulated wire, 0.5m, conductor diameter 0.125mm, insulation thickness 0.014mm, polyester insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.01μm, specific density 20.7μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, insulated wire, 5m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyester insulation, 99.99%
Gold, insulated wire, 2m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.05μm, specific density 101.3μg/cm2, permanent mylar 3.5μm support, 99.99+%
Gold, insulated wire, 1m, conductor diameter 0.05mm, insulation thickness 0.007mm, polyimide insulation, 99.99%
Gold, insulated wire, 0.5m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, rod, 25mm, diameter 3.0mm, as drawn, 99.95%
Gold, microleaf disks, 10mm, thinness 0.5μm, specific density 966μg/cm2, removable support, 99.99+%
Gold, tube, 200mm, outside diameter 1.0mm, inside diameter 0.5mm, wall thickness 0.25mm, as drawn, 99.95%