Skip to Content
Merck

Beta-alanine as a small molecule neurotransmitter.

Neurochemistry international (2010-06-15)
K E Tiedje, K Stevens, S Barnes, D F Weaver
ABSTRACT

This review discusses the role of beta-alanine as a neurotransmitter. Beta-alanine is structurally intermediate between alpha-amino acid (glycine, glutamate) and gamma-amino acid (GABA) neurotransmitters. In general, beta-alanine satisfies a number of the prerequisite classical criteria for being a neurotransmitter: beta-alanine occurs naturally in the CNS, is released by electrical stimulation through a Ca(2+) dependent process, has binding sites, and inhibits neuronal excitability. beta-Alanine has 5 recognized receptor sites: glycine co-agonist site on the NMDA complex (strychnine-insensitive); glycine receptor site (strychnine sensitive); GABA-A receptor; GABA-C receptor; and blockade of GAT protein-mediated glial GABA uptake. Although beta-alanine binding has been identified throughout the hippocampus, limbic structures, and neocortex, unique beta-alaninergic neurons with no GABAergic properties remain unidentified, and it is impossible to discriminate between beta-alaninergic and GABAergic properties in the CNS. Nevertheless, a variety of data suggest that beta-alanine should be considered as a small molecule neurotransmitter and should join the ranks of the other amino acid neurotransmitters. These realizations open the door for a more comprehensive evaluation of beta-alanine's neurochemistry and for its exploitation as a platform for drug design.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Alanine, 99%
Sigma-Aldrich
β-Alanine, BioReagent, suitable for cell culture, suitable for insect cell culture
Supelco
β-Alanine, analytical standard
Sigma-Aldrich
β-Alanine, BioXtra, ≥99.0% (NT)
Sigma-Aldrich
β-Alanine, BioUltra, ≥99.0% (NT)
Supelco
Beta Alanine, Pharmaceutical Secondary Standard; Certified Reference Material