Skip to Content
Merck
  • Effects of 1,25-dihydroxyvitamin D3 and vitamin D3 on the expression of the vitamin d receptor in human skeletal muscle cells.

Effects of 1,25-dihydroxyvitamin D3 and vitamin D3 on the expression of the vitamin d receptor in human skeletal muscle cells.

Calcified tissue international (2014-12-07)
Rachele M Pojednic, Lisa Ceglia, Karl Olsson, Thomas Gustafsson, Alice H Lichtenstein, Bess Dawson-Hughes, Roger A Fielding
ABSTRACT

Vitamin D receptor (VDR) expression and action in non-human skeletal muscle have recently been reported in several studies, yet data on the activity and expression of VDR in human muscle cells are scarce. We conducted a series of studies to examine the (1) effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on VDR gene expression in human primary myoblasts, (2) effect of 16-week supplementation with vitamin D3 on intramuscular VDR gene expression in older women, and (3) association between serum 25-hydroxyvitamin D (25OHD) and intramuscular VDR protein concentration in older adults. Human primary myoblasts were treated with increasing concentrations of 1,25(OH)2D3 for 18 h. A dose-dependent treatment effect was noted with 1 nmol/L of 1,25OH2D3 increasing intramuscular VDR mRNA expression (mean fold change±SD 1.36±0.33; P=0.05). Muscle biopsies were obtained at baseline and 16 weeks after vitamin D3 supplementation (4,000 IU/day) in older adults. Intramuscular VDR mRNA was significantly different from placebo after 16 weeks of vitamin D3 (1.2±0.99; -3.2±1.7, respectively; P=0.04). Serum 25OHD and intramuscular VDR protein expression were examined by immunoblot. 25OHD was associated with intramuscular VDR protein concentration (R=0.67; P=0.0028). In summary, our study found VDR gene expression increases following treatment with 1,25OH2D3 in human myoblasts. 25OHD is associated with VDR protein and 16 weeks of supplementation with vitamin D3 resulted in a persistent increase in VDR gene expression of vitamin D3 in muscle tissue biopsies. These findings suggest treatment with vitamin D compounds results in sustained increases in VDR in human skeletal muscle.

MATERIALS
Product Number
Brand
Product Description

Supelco
Water, for TOC analysis
Supelco
Water, suitable for ion chromatography
Supelco
Density Standard 998 kg/m3, H&D Fitzgerald Ltd. Quality
Sigma-Aldrich
Water, BioPerformance Certified
Supelco
Water, ACS reagent, for ultratrace analysis
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Water, tested according to Ph. Eur.
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Supelco
Water, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
Water, Deionized
Sigma-Aldrich
Water, ACS reagent
Sigma-Aldrich
Water, HPLC Plus
Sigma-Aldrich
Water, suitable for HPLC