Skip to Content
Merck
  • Apoptotic effects of high-dose rapamycin occur in S-phase of the cell cycle.

Apoptotic effects of high-dose rapamycin occur in S-phase of the cell cycle.

Cell cycle (Georgetown, Tex.) (2015-05-07)
Mahesh Saqcena, Deven Patel, Deepak Menon, Suman Mukhopadhyay, David A Foster
ABSTRACT

Mutations in genes encoding regulators of mTOR, the mammalian target of rapamycin, commonly provide survival signals in cancer cells. Rapamycin and analogs of rapamycin have been used with limited success in clinical trials to target mTOR-dependent survival signals in a variety of human cancers. Suppression of mTOR predominantly causes G1 cell cycle arrest, which likely contributes to the ineffectiveness of rapamycin-based therapeutic strategies. While rapamycin causes the accumulation of cells in G1, its effect in other cell cycle phases remains largely unexplored. We report here that when synchronized MDA-MB-231 breast cancer cells are allowed to progress into S-phase from G1, rapamycin activates the apoptotic machinery with a concomitant increase in cell death. In Calu-1 lung cancer cells, rapamycin induced a feedback increase in Akt phosphorylation at Ser473 in S-phase that mitigated rapamycin-induced apoptosis. However, sensitivity to rapamycin in S-phase could be reestablished if Akt phosphorylation was suppressed. We recently reported that glutamine (Gln) deprivation causes K-Ras mutant cancer cells to aberrantly arrest primarily in S-phase. Consistent with observed sensitivity of S-phase cells to rapamycin, interfering with Gln utilization sensitized both MDA-MB-231 and Calu-1 K-Ras mutant cancer cells to the apoptotic effect of rapamycin. Importantly, rapamycin induced substantially higher levels of cell death upon Gln depletion than that observed in cancer cells that were allowed to progress through S-phase after being synchronized in G1. We postulate that exploiting metabolic vulnerabilities in cancer cells such as S-phase arrest observed with K-Ras-driven cancer cells deprived of Gln, could be of great therapeutic potential.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Rapamycin, Ready Made Solution, 2.5 mg/mL in DMSO (2.74 mM), from Streptomyces hygroscopicus
Sigma-Aldrich
(±)-Mevalonolactone, ~97% (titration)
Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium - high glucose, With 4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium - low glucose, With 1000 mg/L glucose, and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
L-Glutamine solution, 200 mM, solution, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Mevinolin from Aspergillus sp., ≥98% (HPLC)
Sigma-Aldrich
Fetal Bovine Serum, USA origin, Heat Inactivated, sterile-filtered, suitable for cell culture, suitable for insect cell culture, suitable for hybridoma
Sigma-Aldrich
Fetal Bovine Serum, USA origin, Dialyzed by ultrafiltration against 0.15 M NaCl, sterile-filtered, suitable for cell culture