Skip to Content
Merck
  • The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.

The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.

Journal of hazardous materials (2015-06-16)
Simone Pollastri, Francesco D'Acapito, Angela Trapananti, Ivan Colantoni, Giovanni B Andreozzi, Alessandro F Gualtieri
ABSTRACT

Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite > crocidolite ≈ chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe(3+). Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Rhodium, powder, 99.95% trace metals basis
Rhodium, wire reel, 0.1m, diameter 0.25mm, hard, 99.9%
Rhodium, foil, not light tested, 25x25mm, thickness 0.006mm, as rolled, 99.9%
Rhodium, wire reel, 0.1m, diameter 0.5mm, as drawn, 99.9%
Rhodium, foil, not light tested, 25x25mm, thickness 0.001mm, permanent polyester support, 99.85%
Rhodium, foil, light tested, 25x25mm, thickness 0.05mm, as rolled, 99.9%
Rhodium, foil, not light tested, 50x50mm, thickness 0.00025mm, permanent polyester support, 99.9%
Rhodium, wire reel, 0.05m, diameter 0.12mm, as drawn, 99.9%
Rhodium, wire reel, 0.2m, diameter 0.12mm, as drawn, 99.9%
Rhodium, foil, light tested, 25x25mm, thickness 0.075mm, as rolled, 99.9%
Rhodium, wire reel, 0.05m, diameter 0.25mm, hard, 99.9%
Rhodium, foil, 25x25mm, thickness 0.125mm, as rolled, 99.9%
Rhodium, foil, not light tested, 50x50mm, thickness 0.00075mm, permanent polyester support, 99.85%
Rhodium, wire reel, 0.2m, diameter 0.25mm, hard, 99.9%
Rhodium, foil, light tested, 25x25mm, thickness 0.05mm, as rolled, x-ray quality, 99.9%
Rhodium, wire reel, 0.05m, diameter 0.5mm, as drawn, 99.9%
Rhodium, foil, not light tested, 10x10mm, thickness 0.012mm, as rolled, 99.9%
Rhodium, foil, 25x25mm, thickness 0.15mm, as rolled, 99.9%
Rhodium, microfoil, disks, 25mm, thinness 0.1μm, specific density 124μg/cm2, permanent mylar 3.5μm support, 99.9%
Rhodium, foil, not light tested, 25x25mm, thickness 0.012mm, as rolled, 99.9%
Rhodium, foil, 25x25mm, thickness 0.1mm, as rolled, 99.9%
Rhodium, foil, not light tested, 50x50mm, thickness 0.006mm, as rolled, 99.9%
Rhodium, foil, not light tested, 25x25mm, thickness 0.0005mm, permanent polyester support, 99.85%
Rhodium, foil, not light tested, 50x50mm, thickness 0.001mm, permanent polyester support, 99.85%
Rhodium, wire reel, 0.2m, diameter 0.5mm, as drawn, 99.9%
Rhodium, wire reel, 0.1m, diameter 1.0mm, as drawn, 99.9%
Rhodium, foil, not light tested, 25x25mm, thickness 0.00025mm, permanent polyester support, 99.9%
Rhodium, microfoil, disks, 10mm, thinness 0.1μm, specific density 124μg/cm2, permanent mylar 3.5μm support, 99.9%
Rhodium, wire reel, 0.5m, diameter 0.12mm, as drawn, 99.9%
Rhodium, wire reel, 0.5m, diameter 0.25mm, hard, 99.9%