Skip to Content
Merck
  • Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward.

Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward.

Nature communications (2015-10-28)
Melissa A Stouffer, Catherine A Woods, Jyoti C Patel, Christian R Lee, Paul Witkovsky, Li Bao, Robert P Machold, Kymry T Jones, Soledad Cabeza de Vaca, Maarten E A Reith, Kenneth D Carr, Margaret E Rice
ABSTRACT

Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Tyrosine Hydroxylase Antibody, clone LNC1, ascites fluid, clone LNC1, Chemicon®
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
Anti-Choline Acetyltransferase Antibody, serum, Chemicon®
SKU
Pack Size
Availability
Price
Quantity