Skip to Content
Merck

Are MUPs a Toxic Waste Disposal System?

PloS one (2016-03-12)
Jae Kwak, Eva Strasser, Ken Luzynski, Michaela Thoß, Dustin J Penn
ABSTRACT

Male house mice produce large quantities of major urinary proteins (MUPs), which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds ('toxic waste hypothesis'). In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP), in the urine of wild-derived house mice (Mus musculus musculus). Addition of guanidine hydrochloride to male and female urine resulted in an increased release of DTBP. This increase was only observed in the high molecular weight fractions (HMWF; > 3 kDa) separated from male or female urine, suggesting that the increased release of DTBP was likely due to the denaturation of MUPs and the subsequent release of MUP-bound DTBP. Furthermore, when DTBP was added to a HMWF isolated from male urine, an increase in 2-sec-butyl-4,5-dihydrothiazole (SBT), the major ligand of MUPs and a male-specific pheromone, was observed, indicating that DTBP was bound to MUPs and displaced SBT. These results suggest that DTBP is a MUP ligand. Moreover, we found evidence for competitive ligand binding between DTBP and SBT, suggesting that males potentially face a tradeoff between eliminating toxic wastes versus transporting pheromones. Our findings support the hypothesis that MUPs bind and eliminate toxic wastes, which may provide the most important fitness benefits of excreting large quantities of these proteins.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,4-Di-tert-butylphenol, 99%
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
100 mg
In Stock
Details...
₩259,231
500 mg
Please contact Customer Service for Availability
₩504,455