콘텐츠로 건너뛰기
Merck
모든 사진(1)

Key Documents

933082

Sigma-Aldrich

NanoFabTx NanoFlash PEG-PLA drug formulation screening kit

for CIJ synthesis of nanoparticles

로그인조직 및 계약 가격 보기


About This Item

UNSPSC 코드:
12162002
NACRES:
NA.21

애플리케이션

NanoFabTx NanoFlash PEG-PLA drug formulation screening kit is a ready to use nanoformulation kit for flash nanoprecipitation synthesis of PEGylated PLA nanoparticles for drug delivery research applications. This kit contains rationally selected PEGylated PLA polymers and stabilizer, enabling users to screen and select nanoformulations without the need for lenghty trial and error optimization. These PEGylated PLA polymers have been widely used in drug delivery systems for controlled drug release of many different types of therapeutic molecules.

This kit has been curated and designed for flash nanoprecipitiaton (FNP) nanoparticle synthesis using a confined impingement jet (CIJ) mixer, such as the NanoFabTx NanoFlash CIJ Mixer, and detailed step-by-step instructions are provided.

특징 및 장점

  • Ready-to-use nanoformulation kit for PEGylated nanoparticles
  • Step-by-step flash nanoprecipitation protocol
  • Create specifically sized, biodegradable, PEGylated PLA nanoparticles
  • Maximize the encapsulation of hydrophobic drugs
  • Two different PEGylated PLAs are included
  • Optimized for 60 nm-150 nm nanoparticles
A flash nanoprecipitation protocol to prepare drug-encapsulated nanoparticles using the NanoFabTx NanoFlash CIJ Mixer is included and can be found under the Protocol section of this page.

법적 정보

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Jing Han et al.
Journal of pharmaceutical sciences, 101(10), 4018-4023 (2012-07-11)
Johnson and Prud'homme (2003. AICHE J 49:2264-2282) introduced the confined impingement jets (CIJ) mixer to prepare nanoparticles loaded with hydrophobic compounds (e.g., drugs, inks, fragrances, or pheromones) via flash nanoprecipitation (FNP). We have modified the original CIJ design to allow
Robert F Pagels et al.
Journal of controlled release : official journal of the Controlled Release Society, 219, 519-535 (2015-09-12)
Biologically derived therapeutics, or biologics, are the most rapidly growing segment of the pharmaceutical marketplace. However, there are still unmet needs in improving the delivery of biologics. Injectable polymeric nanoparticles and microparticles capable of releasing proteins and peptides over time
C Thomasin et al.
Journal of pharmaceutical sciences, 87(3), 269-275 (1998-04-02)
Phase separation (frequently called coacervation) of poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) is a classical method for drug microencapsulation. Here, attempts have been made to describe this process in the light of thermodynamics. Different PLA/PLGAs were dissolved in either dichloromethane or
K S Soppimath et al.
Journal of controlled release : official journal of the Controlled Release Society, 70(1-2), 1-20 (2001-02-13)
This review presents the most outstanding contributions in the field of biodegradable polymeric nanoparticles used as drug delivery systems. Methods of preparation, drug loading and drug release are covered. The most important findings on surface modification methods as well as
Verónica Lassalle et al.
Macromolecular bioscience, 7(6), 767-783 (2007-06-02)
The controlled release of medicaments remains the most convenient way of drug delivery. Therefore, a wide variety of reports can be found in the open literature dealing with drug delivery systems. In particular, the use of nano- and microparticles devices

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.