콘텐츠로 건너뛰기
Merck
  • Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling.

Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling.

Polymers (2019-06-12)
Eric Schönemann, André Laschewsky, Erik Wischerhoff, Julian Koc, Axel Rosenhahn
초록

Films of zwitterionic polymers are increasingly explored for conferring fouling resistance to materials. Yet, the structural diversity of polyzwitterions is rather limited so far, and clear structure-property relationships are missing. Therefore, we synthesized a series of new polyzwitterions combining ammonium and sulfate groups in their betaine moieties, so-called poly(sulfabetaine)s. Their chemical structures were varied systematically, the monomers carrying methacrylate, methacrylamide, or styrene moieties as polymerizable groups. High molar mass homopolymers were obtained by free radical polymerization. Although their solubilities in most solvents were very low, brine and lower fluorinated alcohols were effective solvents in most cases. A set of sulfabetaine copolymers containing about 1 mol % (based on the repeat units) of reactive benzophenone methacrylate was prepared, spin-coated onto solid substrates, and photo-cured. The resistance of these films against the nonspecific adsorption by two model proteins (bovine serum albumin-BSA, fibrinogen) was explored, and directly compared with a set of references. The various polyzwitterions reduced protein adsorption strongly compared to films of poly(nbutyl methacrylate) that were used as a negative control. The poly(sulfabetaine)s showed generally even somewhat higher anti-fouling activity than their poly(sulfobetaine) analogues, though detailed efficacies depended on the individual polymer-protein pairs. Best samples approach the excellent performance of a poly(oligo(ethylene oxide) methacrylate) reference.