์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
Merck

Screen-Printed Glucose Sensors Modified with Cellulose Nanocrystals (CNCs) for Cell Culture Monitoring.

Biosensors (2020-09-17)
Ye Tang, Konstantinos Petropoulos, Felix Kurth, Hui Gao, Davide Migliorelli, Olivier Guenat, Silvia Generelli
์ดˆ๋ก

Glucose sensors are potentially useful tools for monitoring the glucose concentration in cell culture medium. Here, we present a new, low-cost, and reproducible sensor based on a cellulose-based material, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized-cellulose nanocrystals (CNCs). This novel biocompatible and inert nanomaterial is employed as a polymeric matrix to immobilize and stabilize glucose oxidase in the fabrication of a reproducible, operationally stable, highly selective, cost-effective, screen-printed glucose sensor. The sensors have a linear range of 0.1-2 mM (R2 = 0.999) and a sensitivity of 5.7 ยฑ 0.3 ยตA cm-2โˆ™mM-1. The limit of detection is 0.004 mM, and the limit of quantification is 0.015 mM. The sensor maintains 92.3 % of the initial current response after 30 consecutive measurements in a 1 mM standard glucose solution, and has a shelf life of 1 month while maintaining high selectivity. We demonstrate the practical application of the sensor by monitoring the glucose consumption of a fibroblast cell culture over the course of several days.

MATERIALS
์ œํ’ˆ ๋ฒˆํ˜ธ
๋ธŒ๋žœ๋“œ
์ œํ’ˆ ์„ค๋ช…

Sigma-Aldrich
L-Ascorbic acid, BioXtra, โ‰ฅ99.0%, crystalline
Sigma-Aldrich
Sodium bromide, ≥99.99% trace metals basis
Sigma-Aldrich
L-(+)-Lactic acid, โ‰ฅ98%