콘텐츠로 건너뛰기
Merck
  • Dynamics of cell wall components of Magnaporthe grisea during infectious structure development.

Dynamics of cell wall components of Magnaporthe grisea during infectious structure development.

Molecular microbiology (2009-07-16)
Takashi Fujikawa, Yukari Kuga, Shigekazu Yano, Akira Yoshimi, Takashi Tachiki, Keietsu Abe, Marie Nishimura
초록

Oligosaccharides derived from cell wall of fungal pathogens induce host primary immune responses. To understand fungal strategies circumventing the host plant immune responses, cell wall polysaccharide localization was investigated using fluorescent labels during infectious structure differentiation in the rice blast fungus Magnaporthe grisea. alpha-1,3-glucan was labelled only on appressoria developing on plastic surfaces, whereas it was detected on both germ tubes and appressoria on plant surfaces. Chitin, chitosan and beta-1,3-glucan were detected on germ tubes and appressoria regardless of the substrate. Major polysaccharides labelled at accessible surface of infectious hyphae were alpha-1,3-glucan and chitosan, but after enzymatic digestion of alpha-1,3-glucan, beta-1,3-glucan and chitin became detectable. Immunoelectron microscopic analysis showed alpha-1,3-glucan and beta-1,3-glucan intermixed in the cell wall of infectious hyphae; however, alpha-1,3-glucan tended to be distributed farther from the fungal cell membrane. The fungal cell wall became more tolerant to chitinase digestion upon accumulation of alpha-1,3-glucan. Accumulation of alpha-1,3-glucan was dependent on the Mps1 MAP kinase pathway, which was activated by a plant wax derivative, 1,16-hexadecanediol. Taken together, alpha-1,3-glucan spatially and functionally masks beta-1,3-glucan and chitin in the cell wall of infectious hyphae. Thus, a dynamic change of composition of cell wall polysaccharides occurs during plant infection in M. grisea.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
1,16-Hexadecanediol, 97%