Skip to Content
MilliporeSigma
All Photos(2)

Documents

747793

Sigma-Aldrich

(Ir[dF(CF3)ppy]2(dtbpy))PF6

Sign Into View Organizational & Contract Pricing

Synonym(s):
[Ir{dF(CF3)ppy}2(dtbpy)]PF6, [4,4′-Bis(1,1-dimethylethyl)-2,2′-bipyridine-N1,N1′]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-N]phenyl-C]Iridium(III) hexafluorophosphate
Empirical Formula (Hill Notation):
C42H34F16IrN4P
CAS Number:
Molecular Weight:
1121.91
UNSPSC Code:
12352300
NACRES:
NA.22

form

solid

Quality Level

reaction suitability

core: iridium
reagent type: catalyst
reaction type: Photocatalysis

mp

>300 °C

photocatalyst activation

450 nm

SMILES string

F[P](F)(F)(F)(F)F.CC(C)(C)C1=CC=[N@H]2C(=C1)C3=CC(=CC=[N@@H]3[Ir]2456c7cc(F)cc(F)c7C8=CC=C(C=[N]48)C(F)(F)F)C(C)(C)C.Fc9cc(F)c(C%10=[N]5C=C(C=C%10)C(F)(F)F)c6c9

Looking for similar products? Visit Product Comparison Guide

Application

(Ir[dF(CF3)ppy]2(dtbpy))PF6 is a cyclometalated iridium(III) complex that can be used in visible-light mediated photocatalytic organic transformations.It has been used to achieve late-stage incorporation of alkyl groups to a variety of biologically active heterocycles.

Product can be used with our line of photoreactors: Including Penn PhD (Z744035) & SynLED 2.0 (Z744080)

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

A photochemical strategy for lignin degradation at room temperature.
Nguyen J D, et al.
Journal of the American Chemical Society, 136(4), 1218-1221 (2014)
Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations.
Teegardin K, et al.
Organic Process Research & Development, 20(7), 1156-1163 (2016)
Late?Stage Functionalization of Biologically Active Heterocycles Through Photoredox Catalysis.
DiRocco D A et al.
Angewandte Chemie (International Edition in English), 53(19), 4802-4806 (2014)
Formal Total Synthesis of l-Ossamine via Decarboxylative Functionalization Using Visible-Light-Mediated Photoredox Catalysis in a Flow System.
Inuki S, et al.
The Journal of Organic Chemistry, 82(2), 1248-1253 (2017)
Radical Carbon?Carbon Bond Formations Enabled by Visible Light Active Photocatalysts.
Wallentin C J, et al.
Chimia, 66(6), 394-398 (2012)

Related Content

Research in the Stephenson lab focuses upon the development of new chemical methods which enable the activation of chemical bonds under mild reaction conditions.

Explore reliable, premium grade catalysis materials for your pharma or industrial project. Specialty chemicals and formulations are available in bulk quantities and volumes from a few grams to multi-metric tons with complete documentation to simplify your leap from development to commercialization.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service