MilliporeSigma
All Photos(1)

Documents

900727

Sigma-Aldrich

PbS core-type quantum dots

fluorescence λem 1600 nm, 10 mg/mL in toluene

Sign Into View Organizational & Contract Pricing

Synonym(s):
Fluorescent nanocrystals, Lead sulfide, PbS QDs
Linear Formula:
PbS
CAS Number:

form

liquid

Quality Level

concentration

10 mg/mL in toluene

fluorescence

λem 1600 nm

storage temp.

2-8°C

InChI

1S/Pb.H2S/h;1H2

InChI key

MIXDRAMRMDOQJH-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
900738900735900734
concentration

10 mg/mL in toluene

concentration

10 mg/mL in toluene

concentration

10 mg/mL in toluene

concentration

10 mg/mL in toluene

fluorescence

λem 1600 nm

fluorescence

λem 1400 nm

fluorescence

λem 1100 nm

fluorescence

λem 1000 nm

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

2-8°C

Quality Level

100

Quality Level

100

Quality Level

100

Quality Level

100

Application

The size for our lead sulfide (PbS) quantum dots (QDs) varies between 2.5 to 8 nm and depending upon this, these QDs emit between 900-1600 nm. Our PbS QDs possess high quantum yield, sharp emission and exhibit narrow fluorescence band (full width at half maximum <100 nm), which make them suitable as light absorber or IR emitter in applications in solar cells, photodetectors and infrared light emitting diodes (LEDs).

Signal Word

Danger

Hazard Classifications

Aquatic Chronic 2 - Asp. Tox. 1 - Flam. Liq. 2 - Repr. 1A - Skin Irrit. 2 - STOT RE 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

45.5 °F - closed cup

Flash Point(C)

7.5 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 3

1 of 3

Gerasimos Konstantatos et al.
Nature nanotechnology, 5(6), 391-400 (2010-05-18)
The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution
Xinzheng Lan et al.
Advanced materials (Deerfield Beach, Fla.), 28(2), 299-304 (2015-11-19)
A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built
Highly efficient quantum dot near-infrared light-emitting diodes.
Gong X, et al.
Nature Photonics, 10, 253-257 (2016)

Articles

In this article, the properties of some of the new non-cadmium based QDs along with different applications of QDs are summarized.

Dr. Delehanty and researcher introduce recent advances in the use of cadmium-free quantum dots for bioimaging. Focus is placed on strategies that have emerged in the last five years for design, synthesis, and surface modifications of non-Cd quantum dots (QDs) for bioimaging and sensing applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service