MilliporeSigma
Search Within
Applications
Content Type

655201ALDRICH

Applied Filters:
Keyword:'655201ALDRICH'
facet content type:Technical Article
Showing 1-10 of 10 results for "655201ALDRICH" within Site Content
New Conducting and Semiconducting Polymers for Plastic Electronics
In the field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), improved organic conducting and semiconducting materials are needed. The progress in two fields is reviewed in this article.
Conductive Polymers for Advanced Micro- and Nano-fabrication Processes
Conducting polymers such as polyaniline, polythiophene and polyfluorenes are now much in the spotlight for their applications in organic electronics and optoelectronics.
Flexible and Printed Organic Thermoelectrics: Opportunities and Challenges
Progress in Organic Thermoelectric Materials & Devices including high ZT values of >0.2 at room temperature by p-type (PEDOT:PSS) & n-type (Poly[Kx(Ni-ett)]) materials are discussed.
Inorganic Interface Layer Inks for Organic Electronic Applications
Find advantages of inorganic interface layer inks for organic electronic & other applications.
Organic Bioelectronic Materials and Devices for Bridging Biology and Traditional Electronics
Professor Rivnay (Northwestern University, USA) discusses using organic mixed conductors as an alternative to efficiently bridge the ionic world of biology with contemporary microelectronics.
Conducting Polymer Device Applications
The application of conducting polymers at the interface with biology is an exciting new trend in organic electronics research.
Stretchable Electroluminescent Devices
Dr. Tan and researcher introduce recent trends in Self-healing Soft Electronic Materials and Devices. The emergence of smart, functional SHPs will be highly beneficial to the advancement of the next-generation self-healing soft electronic devices. Autonomously self-healing devices could help to
Inverted Organic Photovoltaic Devices Using Zinc Oxide Nanocomposites as Electron Transporting Layer Materials
Organic photovoltaics (OPVs) represent a low-cost, lightweight, and scalable alternative to conventional solar cells. While significant progress has been made in the development of conventional bulk heterojunction cells, new approaches are required to achieve the performance and stability necessary to
Nanoparticle-based Zinc Oxide Electron Transport Layers for Printed Organic Photodetectors
Recent progress in the area of solution-processed functional materials has led to the development of a variety of thin-film optoelectronic devices with significant promise in the industrial and consumer electronics fields.
Progress for High Performance Tandem Organic Solar Cells
Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.