Search Within


Applied Filters:
Showing 1-11 of 11 results for "917575" within Papers
Erin Maloney et al.
Micromachines, 11(2) (2020-02-23)
The current drug development pipeline takes approximately fifteen years and $2.6 billion to get a new drug to market. Typically, drugs are tested on two-dimensional (2D) cell cultures and animal models to estimate their efficacy before reaching human trials. However
Thuy-Uyen Nguyen et al.
Journal of biomedical materials research. Part A, 107(7), 1541-1550 (2019-03-19)
Irgacure 2959 (I2959) is widely used as a photoinitiator for photochemical crosslinking of hydrogels. However, the free radicals generated from I2959 have been reported to be highly cytotoxic. In this study, methacrylated collagen (CMA) hydrogels were photochemically crosslinked using two
Kathryn E Drzewiecki et al.
Langmuir : the ACS journal of surfaces and colloids, 30(37), 11204-11211 (2014-09-11)
Type-I collagen self-assembles into a fibrillar gel at physiological temperature and pH to provide a cell-adhesive, supportive, structural network. As such, it is an attractive, popular scaffold for in vitro evaluations of cellular behavior and for tissue engineering applications. In
Abigail Isaacson et al.
Experimental eye research, 173, 188-193 (2018-05-18)
Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However
Andrea Mazzocchi et al.
ACS biomaterials science & engineering, 5(4), 1937-1943 (2019-11-15)
Lung cancer is the leading cause of cancer-related death worldwide yet in vitro disease models have been limited to traditional 2D culture utilizing cancer cell lines. In contrast, recently developed 3D models (organoids) have been adopted by researchers to improve
A New Approach to Design Artificial 3D Microniches with Combined Chemical, Topographical, and Rheological Cues.
Stoecklin C, et al.
Advanced Biosystems (2018)
Kathryn E Drzewiecki et al.
Technology, 5(4), 185-195 (2018-03-16)
As a biomaterial, collagen has been used throughout tissue engineering and regenerative medicine. Collagen is native to the body, is highly biocompatible, and naturally promotes cell adhesion and regeneration. However, collagen fibers and the inherent weak mechanical properties of collagen
Apekshya Chhetri et al.
Current protocols in chemical biology, 11(2), e65-e65 (2019-06-06)
With the increase in knowledge on the importance of the tumor microenvironment, cell culture models of cancers can be adapted to better recapitulate physiologically relevant situations. Three main microenvironmental factors influence tumor phenotype: the biochemical components that stimulate cells, the
Andrea Mazzocchi et al.
Biofabrication, 11(1), 015003-015003 (2018-10-03)
Current 3D printing of tissue is restricted by the use of biomaterials that do not recapitulate the native properties of the extracellular matrix (ECM). These restrictions have thus far prevented optimization of composition and structure of the in vivo tissue
Mohammad Izadifar et al.
Tissue engineering. Part C, Methods, 24(2), 74-88 (2017-10-21)
Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue
Ian D Gaudet et al.
Biointerphases, 7(1-4), 25-25 (2012-05-17)
Type-I collagen is an attractive scaffold material for tissue engineering due to its ability to self-assemble into a fibrillar hydrogel, its innate support of tissue cells through bioactive adhesion sites, and its biodegradability. However, a lack of control of material
Page 1 of 1